Limited-information strategies in Banach-Mazur games

Will Brian
University of North Carolina at Charlotte

Toronto Set Theory Seminar
June 26, 2020
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

EMPTY

NONEMPTY
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

EMPTY U_0

NONEMPTY

\[
U_0 \supseteq U_1 \supseteq V_1 \supseteq U_2 \supseteq V_2 \supseteq \ldots
\]

The first player (EMPTY) wins if $\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n = \emptyset$. Otherwise the second player (NONEMPTY) wins.
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

$$\text{EMPTY} \quad U_0 \subseteq \bigcup \quad \text{NONEMPTY} \quad V_0$$
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

EMPTY $U_0 \supseteq U_1 \supseteq \cdots$

NONEMPTY $V_0 \supseteq \cdots$

The first player (EMPTY) wins if $\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n = \emptyset$. Otherwise the second player (NONEMPTY) wins.
In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

The first player (EMPTY) wins if $\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n = \emptyset$. Otherwise the second player (NONEMPTY) wins.
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

EMPTY $U_0 \supseteq U_1 \supseteq U_2$

NONEMPTY $V_0 \supseteq V_1$

Will Brian

Limited-information strategies in Banach-Mazur games
In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

EMPTY $\quad U_0 \quad U_1 \quad U_2$

NONEMPTY $\quad V_0 \quad V_1 \quad V_2$
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

EMPTY $U_0 \supseteq U_1 \supseteq U_2 \supseteq \ldots$

NONEMPTY $V_0 \supseteq V_1 \supseteq V_2 \supseteq \ldots$
In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

The first player (EMPTY) wins if
$$\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n = \emptyset.$$
The Banach-Mazur game

In the Banach-Mazur game on a space X, two players take turns choosing members of an infinite sequence of nonempty open sets.

The first player (EMPTY) wins if
\[\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n = \emptyset. \]
Otherwise the second player (NONEMPTY) wins.
The Banach-Mazur game

For example,
The Banach-Mazur game

For example,

If X is countable, T_1, and has no isolated points, then \textit{EMPTY} has a winning strategy in $\text{BM}(X)$:
For example,

If X is countable, T_1, and has no isolated points, then \textbf{EMPTY} has a winning strategy in $\text{BM}(X)$:
Enumerate $X = \{x_n : n \in \omega\}$, and in the n^{th} round of the game choose $U_n = V_{n-1} \setminus \{x_n\}$.
The Banach-Mazur game

For example,

If X is countable, T_1, and has no isolated points, then EMPTY has a winning strategy in $\text{BM}(X)$:
Enumerate $X = \{x_n : n \in \omega\}$, and in the n^{th} round of the game choose $U_n = V_{n-1} \setminus \{x_n\}$.
The Banach-Mazur game

For example, if X is countable, T_1, and has no isolated points, then EMPTY has a winning strategy in $\text{BM}(X)$:

Enumerate $X = \{x_n : n \in \omega\}$, and in the n^{th} round of the game choose $U_n = V_{n-1} \setminus \{x_n\}$.

If X is a compact Hausdorff space, then NONEMPTY has a winning strategy in $\text{BM}(X)$:
The Banach-Mazur game

For example, if \(X \) is countable, \(T_1 \), and has no isolated points, then \(\text{EMPTY} \) has a winning strategy in \(\text{BM}(X) \):

Enumerate \(X = \{x_n : n \in \omega\} \), and in the \(n^{th} \) round of the game choose \(U_n = V_{n-1} \setminus \{x_n\} \).

If \(X \) is a compact Hausdorff space, then \(\text{NONEMPTY} \) has a winning strategy in \(\text{BM}(X) \):

In the \(n^{th} \) round of the game, choose any nonempty open set \(V_n \) such that \(\overline{V_n} \subseteq U_n \).
The Banach-Mazur game

For example,

If X is countable, T_1, and has no isolated points, then **EMPTY** has a winning strategy in $BM(X)$:
Enumerate $X = \{x_n : n \in \omega\}$, and in the n^{th} round of the game choose $U_n = V_{n-1} \setminus \{x_n\}$.

If X is a compact Hausdorff space, then **NONEMPTY** has a winning strategy in $BM(X)$:
In the n^{th} round of the game, choose any nonempty open set V_n such that $\overline{V_n} \subseteq U_n$.
The Banach-Mazur game

For example,

If X is countable, T_1, and has no isolated points, then **EMPTY** has a winning strategy in BM(X):
Enumerate $X = \{x_n : n \in \omega\}$, and in the n^{th} round of the game choose $U_n = V_{n-1} \setminus \{x_n\}$.

If X is a compact Hausdorff space, then **NONEMPTY** has a winning strategy in BM(X):
In the n^{th} round of the game, choose any nonempty open set V_n such that $V_n \subseteq U_n$.
Then $\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \neq \emptyset$.
A *winning strategy* for one of the players is a prescribed method of play that always results in a win. We saw two examples on the previous slide.
A *winning strategy* for one of the players is a prescribed method of play that always results in a win. We saw two examples on the previous slide.

In both of these examples, the given strategy ignores most of the history of the game, and depends only on the opponent’s previous move (second example), or on the opponent’s previous move and the round number (first example).
A *winning strategy* for one of the players is a prescribed method of play that always results in a win. We saw two examples on the previous slide.

In both of these examples, the given strategy ignores most of the history of the game, and depends only on the opponent’s previous move (second example), or on the opponent’s previous move and the round number (first example).

These are examples of *limited information strategies*.
Limited-information strategies

A \textit{winning strategy} for one of the players is a prescribed method of play that always results in a win. We saw two examples on the previous slide.

In both of these examples, the given strategy ignores most of the history of the game, and depends only on the opponent’s previous move (second example), or on the opponent’s previous move and the round number (first example).

These are examples of \textit{limited information strategies}.

Given \(k \in \omega \), a \textit{winning \(k \)-tactic} is a winning strategy that depends only on the opponent’s previous \(k \) moves.
Limited-information strategies

A *winning strategy* for one of the players is a prescribed method of play that always results in a win. We saw two examples on the previous slide.

In both of these examples, the given strategy ignores most of the history of the game, and depends only on the opponent’s previous move (second example), or on the opponent’s previous move and the round number (first example).

These are examples of *limited information strategies*.

Given $k \in \omega$, a *winning k-tactic* is a winning strategy that depends only on the opponent’s previous k moves. For example, the strategy for **NONEMPTY** in the second example on the previous slide is a winning 1-tactic.
Debs’ space

Theorem (Debs; 1985)

There is a topological space X for which NONEMPTY has a winning 2-tactic, but no winning 1-tactic.
Debs’ space

Theorem (Debs; 1985)

There is a topological space X for which NONEMPTY has a winning 2-tactic, but no winning 1-tactic.

In Debs’ space, it is fairly easy to show that NONEMPTY has a winning strategy, but much more challenging to show that there is a winning 2-tactic.
Debs’ space

Theorem (Debs; 1985)

There is a topological space X *for which* NONEMPTY *has a winning 2-tactic, but no winning 1-tactic.*

In Debs’ space, it is fairly easy to show that NONEMPTY has a winning strategy, but much more challenging to show that there is a winning 2-tactic.

Roughly, the proof that there is a 2-tactic uses topological features of the space to set up a coding mechanism, by which NONEMPTY is able to record, in each consecutive pair of her opponent’s moves, the entire history of the game up to that point.
Debs’ space

Theorem (Debs; 1985)

There is a topological space \(X \) *for which* NONEMPTY *has a winning 2-tactic, but no winning 1-tactic.*

In Debs’ space, it is fairly easy to show that NONEMPTY has a winning strategy, but much more challenging to show that there is a winning 2-tactic.

Roughly, the proof that there is a 2-tactic uses topological features of the space to set up a coding mechanism, by which NONEMPTY is able to record, in each consecutive pair of her opponent’s moves, the entire history of the game up to that point. This coding mechanism enables NONEMPTY to convert an arbitrary winning strategy into a winning 2-tactic.
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which \textsc{Nonempty} has a winning $(k + 1)$-tactic, but no winning k-tactic.
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every \(k \geq 2 \), there is a topological space \(X \) for which NONEMPTY has a winning \((k + 1)\)-tactic, but no winning \(k \)-tactic.

If true, Telgársky’s conjecture would imply:

There is a space \(X \) for which NONEMPTY has a winning strategy, but does not have a winning \(k \)-tactic for any \(k \).
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which
\textsc{NONEMPTY} has a winning $(k + 1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:
There is a space X for which \textsc{NONEMPTY} has a winning strategy, but does not have a winning k-tactic for any k.

Proof:
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which
NONEMPTY has a winning $(k + 1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:
There is a space X for which NONEMPTY has a winning strategy,
but does not have a winning k-tactic for any k.

Proof: For each k, let X_k be a space for which NONEMPTY has a
winning $(k + 1)$-tactic, but no winning k-tactic. Let $X = \bigcup_{k \in \mathbb{N}} X_k$.

\[X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad \ldots \]
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which NONEMPTY has a winning $(k + 1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:

There is a space X for which NONEMPTY has a winning strategy, but does not have a winning k-tactic for any k.

Proof: For each k, let X_k be a space for which NONEMPTY has a winning $(k + 1)$-tactic, but no winning k-tactic. Let $X = \bigcup_{k \in \mathbb{N}} X_k$.

$X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad \ldots$

NONEMPTY has a winning strategy:
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which
NONEMPTY has a winning $(k + 1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:

There is a space X for which NONEMPTY has a winning strategy,
but does not have a winning k-tactic for any k.

Proof: For each k, let X_k be a space for which NONEMPTY has a
winning $(k + 1)$-tactic, but no winning k-tactic. Let $X = \bigcup_{k \in \mathbb{N}} X_k$.

NONEMPTY has a winning strategy: After EMPTY plays $U_0 \subseteq X$,

Telgársky’s Conjecture

Conjecture (Telgársky; 1987)

> For every $k \geq 2$, there is a topological space X for which \textsc{Nonempty} has a winning $(k+1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:

There is a space X for which \textsc{Nonempty} has a winning strategy, but does not have a winning k-tactic for any k.

Proof: For each k, let X_k be a space for which \textsc{Nonempty} has a winning $(k+1)$-tactic, but no winning k-tactic. Let $X = \bigcup_{k \in \mathbb{N}} X_k$.

\[X_1 \quad X_2 \quad \cdots \]

\textsc{Nonempty} has a winning strategy: After \textsc{Empty} plays $U_0 \subseteq X$, \textsc{Nonempty} may choose $V_0 \subseteq U_0 \cap X_k$ for some particular k, and then play with a winning strategy on X_k.
Telgársky’s Conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which \textsc{Nonempty} has a winning $(k + 1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:

There is a space X for which \textsc{Nonempty} has a winning strategy, but does not have a winning k-tactic for any k.

Proof: For each k, let X_k be a space for which \textsc{Nonempty} has a winning $(k + 1)$-tactic, but no winning k-tactic. Let $X = \bigcup_{k \in \mathbb{N}} X_k$.

\textsc{Nonempty} has a winning strategy: After \textsc{Empty} plays $U_0 \subseteq X$, \textsc{Nonempty} may choose $V_0 \subseteq U_0 \cap X_k$ for some particular k, and then play with a winning strategy on X_k.

Will Brian
Limited-information strategies in Banach-Mazur games
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every $k \geq 2$, there is a topological space X for which \textsc{NonEmpty} has a winning $(k + 1)$-tactic, but no winning k-tactic.

If true, Telgársky’s conjecture would imply:

There is a space X for which \textsc{NonEmpty} has a winning strategy, but does not have a winning k-tactic for any k.

Proof: For each k, let X_k be a space for which \textsc{NonEmpty} has a winning $(k + 1)$-tactic, but no winning k-tactic. Let $X = \bigcup_{k \in \mathbb{N}} X_k$.

\textsc{NonEmpty} has no winning k-tactic:
Telgársky’s conjecture

Conjecture (Telgársky; 1987)

For every \(k \geq 2 \), there is a topological space \(X \) for which \(\text{NONEMPTY} \) has a winning \((k + 1)\)-tactic, but no winning \(k \)-tactic.

If true, Telgársky’s conjecture would imply:

There is a space \(X \) for which \(\text{NONEMPTY} \) has a winning strategy, but does not have a winning \(k \)-tactic for any \(k \).

Proof: For each \(k \), let \(X_k \) be a space for which \(\text{NONEMPTY} \) has a winning \((k + 1)\)-tactic, but no winning \(k \)-tactic. Let \(X = \bigcup_{k \in \mathbb{N}} X_k \).

\[\ldots \quad X_{k-1} \quad \bigcirc \quad X_k \quad X_{k+1} \quad X_{k+2} \quad \ldots \]

\(\text{NONEMPTY} \) has no winning \(k \)-tactic: If \(\text{NONEMPTY} \) had a winning \(k \)-tactic for \(X \), she would also have a winning \(k \)-tactic for \(X_k \), because \(\text{EMPTY} \) can play \(U_0 \subseteq X_k \).
Telgársky’s conjecture may fail

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

Assume GCH + □. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic.

In particular, GCH + □ implies the failure of Telgársky’s conjecture for T_3 spaces.
Telgársky’s conjecture may fail

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

Assume GCH + □. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic.

In particular, GCH + □ implies the failure of Telgársky’s conjecture for T_3 spaces (or, a little more generally, for quasi-regular spaces).
Telgársky’s conjecture may fail

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)
Assume GCH + □. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic.

In particular, GCH + □ implies the failure of Telgársky’s conjecture for T_3 spaces (or, a little more generally, for quasi-regular spaces).

Roughly, the proof of this theorem shows that when GCH + □ holds, it is always possible to set up a coding mechanism (much like with Debs’ space, although this version is due to Fred Galvin) by which NONEMPTY is able to record, in each consecutive pair of her opponent’s moves, the entire history of the game up to that point.
Coding strategies

So how does this coding mechanism work?
Coding strategies

So how does this coding mechanism work?

Let us consider a Hausdorff space X with a countable basis \mathcal{B}. Before talking about coding, we need an observation: NONEMPTY may always pretend, without loss of generality, that all of EMPTY's plays are elements of \mathcal{B}. If EMPTY plays some nonempty open set U_n, choose some $U'_n \in \mathcal{B}$ with $U'_n \subseteq U_n$. Then NONEMPTY may continue the game as if EMPTY had played U'_n instead of U_n. If NONEMPTY has a winning strategy in the original game, that strategy still works with this alteration.
So how does this coding mechanism work?

Let us consider a Hausdorff space X with a countable basis \mathcal{B}.

Before talking about coding, we need an observation: NONEMPTY may always pretend, without loss of generality, that all of EMPTY’s plays are elements of \mathcal{B}.
So how does this coding mechanism work? Let us consider a Hausdorff space X with a countable basis \mathcal{B}.

Before talking about coding, we need an observation: NONEMPTY may always pretend, without loss of generality, that all of EMPTY's plays are elements of \mathcal{B}.

If EMPTY plays some nonempty open set U_n, then NONEMPTY may continue the game as if EMPTY had played U'_n instead of U_n. If NONEMPTY has a winning strategy in the original game, that strategy still works with this alteration.
So how does this coding mechanism work?

Let us consider a Hausdorff space X with a countable basis \mathcal{B}.

Before talking about coding, we need an observation: NONEMPTY may always pretend, without loss of generality, that all of EMPTY’s plays are elements of \mathcal{B}.

If EMPTY plays some nonempty open set U_n, choose some $U'_n \in \mathcal{B}$ with $U'_n \subseteq U_n$.
Coding strategies

So how does this coding mechanism work?

Let us consider a Hausdorff space X with a countable basis \mathcal{B}.

Before talking about coding, we need an observation: NONEMPTY may always pretend, without loss of generality, that all of EMPTY’s plays are elements of \mathcal{B}.

![Diagram showing two nested open sets U_n and U'_n.]

If EMPTY plays some nonempty open set U_n, choose some $U'_n \in \mathcal{B}$ with $U'_n \subseteq U_n$. Then NONEMPTY may continue the game as if EMPTY had played U'_n instead of U_n.
Coding strategies

So how does this coding mechanism work?

Let us consider a Hausdorff space X with a countable basis B.

Before talking about coding, we need an observation: NONEMPTY may always pretend, without loss of generality, that all of EMPTY’s plays are elements of B.

If EMPTY plays some nonempty open set U_n, choose some $U_n' \in B$ with $U_n' \subseteq U_n$. Then NONEMPTY may continue the game as if EMPTY had played U_n' instead of U_n.

If NONEMPTY has a winning strategy in the original game, that strategy still works with this alteration.
Coding strategies

So let us assume that all of EMPTY’s plays are elements of \mathcal{B}, and describe the coding mechanism employed by NONEMPTY.
So let us assume that all of EMPTY’s plays are elements of B, and describe the coding mechanism employed by NONEMPTY.

Suppose several rounds of the game have already been played.
So let us assume that all of EMPTY’s plays are elements of \mathcal{B}, and describe the coding mechanism employed by NONEMPTY.

Suppose several rounds of the game have already been played. Because NONEMPTY is playing with some fixed strategy, she is able to reconstruct her moves from EMPTY’s.
So let us assume that all of EMPTY’s plays are elements of \mathcal{B}, and describe the coding mechanism employed by NONEMPTY.

Suppose several rounds of the game have already been played. Because NONEMPTY is playing with some fixed strategy, she is able to reconstruct her moves from EMPTY’s. Before the game began, NONEMPTY assigned to each $U \in \mathcal{B}$ a countable sequence of disjoint open subsets of U, and a bijection from this sequence to the countable set $\mathcal{B}^{<\omega}$. In this way, one of these sets “encodes” all the moves made so far by EMPTY. NONEMPTY pretends that this set was just played by EMPTY, just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set.

Now suppose NONEMPTY can see only the last two moves of EMPTY. From this she can determine both what her countable sequence of sets was, and which one she pretended EMPTY played. From this, NONEMPTY can reconstruct the rest of the game’s history.
So let us assume that all of EMPTY’s plays are elements of B, and describe the coding mechanism employed by NONEMPTY.

Suppose several rounds of the game have already been played. Because NONEMPTY is playing with some fixed strategy, she is able to reconstruct her moves from EMPTY’s. Before the game began, NONEMPTY assigned to each $U \in B$ a countable sequence of disjoint open subsets of U, and a bijection from this sequence to the countable set $B^{<\omega}$. In this way, one of these sets “encodes” all the moves made so far by EMPTY. NONEMPTY pretends that this set was just played by EMPTY, just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set. Now suppose NONEMPTY can see only the last two moves of EMPTY. From this she can determine both what her countable sequence of sets was, and which one she pretended EMPTY played. From this, NONEMPTY can reconstruct the rest of the game’s history.
Coding strategies

So let us assume that all of EMPTY’s plays are elements of \(\mathcal{B} \), and describe the coding mechanism employed by NONEMPTY.

Suppose several rounds of the game have already been played. Because NONEMPTY is playing with some fixed strategy, she is able to reconstruct her moves from EMPTY’s. Before the game began, NONEMPTY assigned to each \(U \in \mathcal{B} \) a countable sequence of disjoint open subsets of \(U \), and a bijection from this sequence to the countable set \(\mathcal{B}^{<\omega} \).

In this way, one of these sets "encodes" all the moves made so far by EMPTY.
Coding strategies

So let us assume that all of EMPTY’s plays are elements of B, and describe the coding mechanism employed by NONEMPTY.

NONEMPTY pretends that this set was just played by EMPTY,
So let us assume that all of \textsc{EMPTY}'s plays are elements of B, and describe the coding mechanism employed by \textsc{NONEMPTY}.

\textsc{NONEMPTY} pretends that this set was just played by \textsc{EMPTY}, and then plays according to her usual strategy.
So let us assume that all of EMPTY’s plays are elements of \(B \), and describe the coding mechanism employed by NONEMPTY.

NONEMPTY pretends that this set was just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set.
Coding strategies

So let us assume that all of EMPTY’s plays are elements of B, and describe the coding mechanism employed by NONEMPTY.

NONEMPTY pretends that this set was just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set.

Now suppose NONEMPTY can see only the last two moves of EMPTY.
So let us assume that all of EMPTY’s plays are elements of \mathcal{B}, and describe the coding mechanism employed by NONEMPTY.

NONEMPTY pretends that this set was just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set.

Now suppose NONEMPTY can see only the last two moves of EMPTY. From this she can determine both what her countable sequence of sets was,
So let us assume that all of EMPTY’s plays are elements of B, and describe the coding mechanism employed by NONEMPTY.

NONEMPTY pretends that this set was just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set.

Now suppose NONEMPTY can see only the last two moves of EMPTY. From this she can determine both what her countable sequence of sets was, and which one she pretended EMPTY played.
So let us assume that all of EMPTY’s plays are elements of \mathcal{B}, and describe the coding mechanism employed by NONEMPTY.

NONEMPTY pretends that this set was just played by EMPTY, and then plays according to her usual strategy. EMPTY’s next move is a subset of this set. Now suppose NONEMPTY can see only the last two moves of EMPTY. From this she can determine both what her countable sequence of sets was, and which one she pretended EMPTY played. From this, NONEMPTY can reconstruct the rest of the game’s history.
Which spaces admit such a coding

What topological properties of the space X enabled us to set up this coding mechanism?
Which spaces admit such a coding

What topological properties of the space X enabled us to set up this coding mechanism?

The countability of \mathcal{B}. Or more precisely, the fact that for every $U \in \mathcal{B}$, there is a surjection from some collection of disjoint open subsets of U onto $\mathcal{B}^{<\omega}$.
Which spaces admit such a coding

What topological properties of the space X enabled us to set up this coding mechanism?

The countability of B. Or more precisely, the fact that for every $U \in B$, there is a surjection from some collection of disjoint open subsets of U onto $B^{<\omega}$. In general, what we need is:

$\nabla(X)$: There is a pseudo-basis B for X such that for every $U \in B$, there is a collection S of disjoint nonempty open subsets of U such that $|\{V \in B : U \subseteq V\}| \leq |S|$.

If this statement is true for some space X, then, via coding, NONEMPTY has a winning strategy in $BM(X)$, then she has a winning 2-tactic. In particular, spaces satisfying this statement cannot witness Telgársky's conjecture.

Will Brian
Limited-information strategies in Banach-Mazur games
Which spaces admit such a coding

What topological properties of the space X enabled us to set up this coding mechanism?

The countability of \mathcal{B}. Or more precisely, the fact that for every $U \in \mathcal{B}$, there is a surjection from some collection of disjoint open subsets of U onto $\mathcal{B}^{<\omega}$. In general, what we need is:

$$\bigtriangledown(X): \text{There is a pseudo-basis } \mathcal{B} \text{ for } X \text{ such that for every } U \in \mathcal{B},$$
$$\text{there is a collection } S \text{ of disjoint nonempty open subsets of } U$$
$$\text{such that } |\{ V \in \mathcal{B} : U \subseteq V \}| \leq |S|.$$

If this statement is true for some space X, then, via coding,

If NONEMPTY has a winning strategy in BM(X), then she has a winning 2-tactic.
Which spaces admit such a coding

What topological properties of the space X enabled us to set up this coding mechanism?

The countability of B. Or more precisely, the fact that for every $U \in B$, there is a surjection from some collection of disjoint open subsets of U onto $B^{<\omega}$. In general, what we need is:

\[\nabla(X) \]: There is a pseudo-basis B for X such that for every $U \in B$, there is a collection S of disjoint nonempty open subsets of U such that $|\{ V \in B : U \subseteq V \}| \leq |S|$.

If this statement is true for some space X, then, via coding, \textit{If NONEMPTY has a winning strategy in BM(X), then she has a winning 2-tactic.} In particular, spaces satisfying this statement cannot witness Telgársky’s conjecture.
Which spaces admit such a coding

It turns out that \triangledown holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:
Which spaces admit such a coding

It turns out that ∇ holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:

Theorem

The following are equivalent:

- $\nabla(X)$ holds for every T_3 (or quasi-regular) space X.

There are T_2 spaces X that fail to satisfy $\nabla(X)$. But we do not know if such spaces can witness Telgársky’s conjecture.
Which spaces admit such a coding

It turns out that ∇ holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:

Theorem

The following are equivalent:

- $\nabla(X)$ holds for every T_3 (or quasi-regular) space X.
- For every Boolean algebra \mathcal{B} with the κ-cc, there is a dense $\mathcal{D} \subseteq \mathcal{B}^+$ such that $|\{d \in \mathcal{D} : b \leq d\}| < \kappa$ for every $b \in \mathcal{B}^+$.
Which spaces admit such a coding

It turns out that \triangledown holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:

Theorem

The following are equivalent:

- $\triangledown(X)$ holds for every T_3 (or quasi-regular) space X.
- For every Boolean algebra \mathcal{B} with the κ-cc, there is a dense $\mathcal{D} \subseteq \mathcal{B}^+$ such that $|\{d \in \mathcal{D} : b \leq d\}| < \kappa$ for every $b \in \mathcal{B}^+$.
- For every separative poset \mathcal{P} with the κ-cc, there is a dense $\mathcal{D} \subseteq \mathcal{P}$ such that $|\{d \in \mathcal{D} : p \text{ extends } d\}| < \kappa$ for every $p \in \mathcal{P}$.
Which spaces admit such a coding

It turns out that ∇ holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:

Theorem

The following are equivalent:

- $\nabla(X)$ holds for every T_3 (or quasi-regular) space X.
- For every Boolean algebra \mathcal{B} with the κ-cc, there is a dense $\mathcal{D} \subseteq \mathcal{B}^+$ such that $|\{d \in \mathcal{D} : b \leq d\}| < \kappa$ for every $b \in \mathcal{B}^+$.
- For every separative poset \mathcal{P} with the κ-cc, there is a dense $\mathcal{D} \subseteq \mathcal{P}$ such that $|\{d \in \mathcal{D} : p \text{ extends } d\}| < \kappa$ for every $p \in \mathcal{P}$.

From now on, we will refer to these equivalent statements as ∇.

There are T_2 spaces X that fail to satisfy $\nabla(X)$. But we do not know if such spaces can witness Telgársky's conjecture.

Limited-information strategies in Banach-Mazur games
Which spaces admit such a coding

It turns out that ∇ holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:

Theorem

The following are equivalent:

- $\nabla(X)$ holds for every T_3 (or quasi-regular) space X.
- For every Boolean algebra \mathbb{B} with the κ-cc, there is a dense $D \subseteq \mathbb{B}^+$ such that $|\{d \in D : b \leq d\}| < \kappa$ for every $b \in \mathbb{B}^+$.
- For every separative poset \mathbb{P} with the κ-cc, there is a dense $D \subseteq \mathbb{P}$ such that $|\{d \in D : p \text{ extends } d\}| < \kappa$ for every $p \in \mathbb{P}$.

From now on, we will refer to these equivalent statements as ∇.

There are T_2 spaces X that fail to satisfy $\nabla(X)$.

Will Brian

Limited-information strategies in Banach-Mazur games
Which spaces admit such a coding

It turns out that ∇ holding for T_3 spaces is really more of an order-theoretic proposition than a topological one:

Theorem

The following are equivalent:

- $\nabla(X)$ holds for every T_3 (or quasi-regular) space X.
- For every Boolean algebra \mathbb{B} with the κ-cc, there is a dense $\mathbb{D} \subseteq \mathbb{B}^+$ such that $|\{d \in \mathbb{D} : b \leq d\}| < \kappa$ for every $b \in \mathbb{B}^+$.
- For every separative poset \mathbb{P} with the κ-cc, there is a dense $\mathbb{D} \subseteq \mathbb{P}$ such that $|\{d \in \mathbb{D} : p \text{ extends } d\}| < \kappa$ for every $p \in \mathbb{P}$.

From now on, we will refer to these equivalent statements as ∇.

There are T_2 spaces X that fail to satisfy $\nabla(X)$. But we do not know if such spaces can witness Telgársky’s conjecture.
Recall the main theorem under discussion:

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

Assume GCH + □. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic. In particular, GCH + □ implies the failure of Telgársky’s conjecture for T_3 spaces.
Recall the main theorem under discussion:

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

Assume GCH + □. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic. In particular, GCH + □ implies the failure of Telgársky’s conjecture for T_3 spaces.

A simplified proof sketch:

GCH + □ \Rightarrow ▽ \Rightarrow Telgársky’s conjecture fails.
Recall the main theorem under discussion:

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

Assume $\text{GCH} + □$. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic. In particular, $\text{GCH} + □$ implies the failure of Telgársky’s conjecture for T_3 spaces.

A simplified proof sketch:

$\text{GCH} + □ \implies ▽ \implies \text{Telgársky’s conjecture fails.}$

So far we have focused on the second implication, which is proved by the coding argument outlined above.
Recall the main theorem under discussion:

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

Assume $\text{GCH} + \Box$. For every T_3 space X, if NONEMPTY has a winning strategy, then she has a winning 2-tactic. In particular, $\text{GCH} + \Box$ implies the failure of Telgársky’s conjecture for T_3 spaces.

A simplified proof sketch:

$\text{GCH} + \Box \implies \Downarrow \implies$ Telgársky’s conjecture fails.

So far we have focused on the second implication, which is proved by the coding argument outlined above.

What about the first implication?
A special case of ∇ provable from ZFC

First let’s consider a special case of ∇ that can be proved from ZFC: Suppose \mathbb{P} is a separative poset with $|\mathbb{P}| = \aleph_1$. Enumerate $\mathbb{P} = \{ p_\alpha : \alpha < \omega_1 \}$, and define $D = \{ p_\alpha : \text{if } \beta < \alpha \text{ then } p_\beta \text{ is not an extension of } p_\alpha \}$. D is dense in \mathbb{P}, because for any given $p_\alpha \in \mathbb{P}$, if $\beta = \min \{ \xi < \omega_1 : p_\xi \text{ extends } p_\alpha \}$, then $p_\beta \in D$. For any given $p_\alpha \in \mathbb{P}$, our definition of D ensures that $\{ d \in D : p_\alpha \text{ extends } d \} \subseteq \{ p_\beta : \beta \leq \alpha \}$, and therefore $\{ d \in D : p_\alpha \text{ extends } d \}$ is countable. It follows that if \mathbb{P} has the \aleph_1-cc (i.e., \mathbb{P} is ccc), then this dense set D witnesses that ∇ holds for \mathbb{P}. (If \mathbb{P} does not have the \aleph_1-cc, then ∇ holds for \mathbb{P} trivially, by taking $D = \mathbb{P}$.)

Will Brian

Limited-information strategies in Banach-Mazur games
A special case of ∇ provable from ZFC

First let’s consider a special case of ∇ that can be proved from ZFC: Suppose \mathbb{P} is a separative poset with $|\mathbb{P}| = \aleph_1$. Enumerate $\mathbb{P} = \{p_\alpha : \alpha < \omega_1\}$, and define

$$\mathbb{D} = \{p_\alpha : \text{if } \beta < \alpha \text{ then } p_\beta \text{ is not an extension of } p_\alpha\}.$$
A special case of ∇ provable from ZFC

First let’s consider a special case of ∇ that can be proved from ZFC: Suppose \mathbb{P} is a separative poset with $|\mathbb{P}| = \aleph_1$. Enumerate $\mathbb{P} = \{p_\alpha : \alpha < \omega_1\}$, and define

$$D = \{p_\alpha : \text{if } \beta < \alpha \text{ then } p_\beta \text{ is not an extension of } p_\alpha\}.$$

- D is dense in \mathbb{P}, because for any given $p_\alpha \in \mathbb{P}$, if $\beta = \min\{\xi < \omega_1 : p_\xi \text{ extends } p_\alpha\}$, then $p_\beta \in D$.

For any given $p_\alpha \in \mathbb{P}$, our definition of D ensures that $\{d \in D : p_\alpha \text{ extends } d\} \subseteq \{p_\beta : \beta \leq \alpha\}$, and therefore $\{d \in D : p_\alpha \text{ extends } d\}$ is countable. It follows that if \mathbb{P} has the \aleph_1-cc (i.e., \mathbb{P} is ccc), then this dense set D witnesses that ∇ holds for \mathbb{P}. (If \mathbb{P} does not have the \aleph_1-cc, then ∇ holds for \mathbb{P} trivially, by taking $D = \mathbb{P}$.)
A special case of ∇ provable from ZFC

First let’s consider a special case of ∇ that can be proved from ZFC: Suppose \mathbb{P} is a separative poset with $|\mathbb{P}| = \aleph_1$. Enumerate $\mathbb{P} = \{ p_\alpha : \alpha < \omega_1 \}$, and define

$$\mathcal{D} = \{ p_\alpha : \text{if } \beta < \alpha \text{ then } p_\beta \text{ is not an extension of } p_\alpha \}.$$

- \mathcal{D} is dense in \mathbb{P}, because for any given $p_\alpha \in \mathbb{P}$, if $\beta = \min \{ \xi < \omega_1 : p_\xi \text{ extends } p_\alpha \}$, then $p_\beta \in \mathcal{D}$.
- For any given $p_\alpha \in \mathbb{P}$, our definition of \mathcal{D} ensures that $\{ d \in \mathcal{D} : p_\alpha \text{ extends } d \} \subseteq \{ p_\beta : \beta \leq \alpha \}$, and therefore $\{ d \in \mathcal{D} : p_\alpha \text{ extends } d \}$ is countable.
First let’s consider a special case of ∇ that can be proved from ZFC: Suppose \mathbb{P} is a separative poset with $|\mathbb{P}| = \aleph_1$.

Enumerate $\mathbb{P} = \{p_\alpha : \alpha < \omega_1\}$, and define

$$D = \{p_\alpha : \text{if } \beta < \alpha \text{ then } p_\beta \text{ is not an extension of } p_\alpha\}.$$

- D is dense in \mathbb{P}, because for any given $p_\alpha \in \mathbb{P}$, if $\beta = \min\{\xi < \omega_1 : p_\xi \text{ extends } p_\alpha\}$, then $p_\beta \in D$.
- For any given $p_\alpha \in \mathbb{P}$, our definition of D ensures that $\{d \in D : p_\alpha \text{ extends } d\} \subseteq \{p_\beta : \beta \leq \alpha\}$, and therefore $\{d \in D : p_\alpha \text{ extends } d\}$ is countable.

It follows that if \mathbb{P} has the \aleph_1-cc (i.e., \mathbb{P} is ccc), then this dense set D witnesses that ∇ holds for \mathbb{P}.
A special case of ∇ provable from ZFC

First let’s consider a special case of ∇ that can be proved from ZFC: Suppose \mathbb{P} is a separative poset with $|\mathbb{P}| = \aleph_1$.

Enumerate $\mathbb{P} = \{p_\alpha : \alpha < \omega_1\}$, and define

$$D = \{p_\alpha : \text{if } \beta < \alpha \text{ then } p_\beta \text{ is not an extension of } p_\alpha\}.$$

- D is dense in \mathbb{P}, because for any given $p_\alpha \in \mathbb{P}$, if $\beta = \min\{\xi < \omega_1 : p_\xi \text{ extends } p_\alpha\}$, then $p_\beta \in D$.
- For any given $p_\alpha \in \mathbb{P}$, our definition of D ensures that $\{d \in D : p_\alpha \text{ extends } d\} \subseteq \{p_\beta : \beta \leq \alpha\}$, and therefore $\{d \in D : p_\alpha \text{ extends } d\}$ is countable.

It follows that if \mathbb{P} has the \aleph_1-cc (i.e., \mathbb{P} is ccc), then this dense set D witnesses that ∇ holds for \mathbb{P}. (If \mathbb{P} does not have the \aleph_1-cc, then ∇ holds for \mathbb{P} trivially, by taking $D = \mathbb{P}$.)
GCH + □ and magic enumerations of posets

Roughly, GCH + □ enables us to use a similar argument for larger \(\mathbb{P} \).
GCH + □ and magic enumerations of posets

Roughly, GCH + □ enables us to use a similar argument for larger \(\mathbb{P} \).

In general, any enumeration of a ccc poset \(\mathbb{P} \) gives rise to a dense \(\mathbb{D} \subseteq \mathbb{P} \) via a greedy algorithm, as on the previous slide.
Roughly, GCH + □ enables us to use a similar argument for larger \mathbb{P}.

In general, any enumeration of a ccc poset \mathbb{P} gives rise to a dense $D \subseteq \mathbb{P}$ via a greedy algorithm, as on the previous slide. But when $|\mathbb{P}| > \aleph_1$, the dense set given by an arbitrary enumeration of \mathbb{P} may no longer witness ∇.
Roughly, GCH + □ enables us to use a similar argument for larger P. In general, any enumeration of a ccc poset P gives rise to a dense $D \subseteq P$ via a greedy algorithm, as on the previous slide. But when $|P| > \aleph_1$, the dense set given by an arbitrary enumeration of P may no longer witness ∇. The reason is that while upward cones in D are still contained in initial segments of our enumeration, these initial segments are not always countable.
GCH + □ and magic enumerations of posets

Roughly, GCH + □ enables us to use a similar argument for larger \mathbb{P}.

In general, any enumeration of a ccc poset \mathbb{P} gives rise to a dense $\mathcal{D} \subseteq \mathbb{P}$ via a greedy algorithm, as on the previous slide. But when $|\mathbb{P}| > \aleph_1$, the dense set given by an arbitrary enumeration of \mathbb{P} may no longer witness ∇. The reason is that while upward cones in \mathcal{D} are still contained in initial segments of our enumeration, these initial segments are not always countable.

Special enumerations of \mathbb{P} are needed to make the argument work.
Roughly, GCH + □ enables us to use a similar argument for larger \(P \).

In general, any enumeration of a ccc poset \(P \) gives rise to a dense \(D \subseteq P \) via a greedy algorithm, as on the previous slide. But when \(|P| > \aleph_1 \), the dense set given by an arbitrary enumeration of \(P \) may no longer witness \(\nabla \). The reason is that while upward cones in \(D \) are still contained in initial segments of our enumeration, these initial segments are not always countable.

Special enumerations of \(P \) are needed to make the argument work.

These enumerations arise from special chains of elementary submodels called *high Davies trees*, which are constructed via GCH + □.
A *high Davies tree* for \mathbb{P} over μ is a sequence $\langle M_\alpha : \alpha < \mu \rangle$ of elementary submodels of some "sufficiently large" fragment H of the set-theoretic universe such that

- $\mathbb{P} \in M_\alpha$,
- M_α is countably closed,
- $|M_\alpha| = \aleph_1$ for every α,
- $\mathbb{P} \subseteq \bigcup_{\alpha < \mu} M_\alpha$,
- and for each $\alpha < \mu$, there is a countable set N_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha$.
Definition

A *high Davies tree* for \mathbb{P} over μ is a sequence $\langle M_\alpha : \alpha < \mu \rangle$ of elementary submodels of some "sufficiently large" fragment H of the set-theoretic universe such that

- $\mathbb{P} \in M_\alpha$, M_α is countably closed, and $|M_\alpha| = \aleph_1$ for every α,
- $\mathbb{P} \subseteq \bigcup_{\alpha < \mu} M_\alpha$, and
- for each $\alpha < \mu$, there is a countable set N_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha$.

Theorem (Soukup and Soukup; 2017)

Assuming $\text{GCH} + \square$, if \mathbb{P} is any set and μ any regular uncountable cardinal with $\mu \geq |\mathbb{P}|$, then there is a high Davies tree for \mathbb{P} over μ.

Will Brian

Limited-information strategies in Banach-Mazur games
Definition

A high Davies tree for \mathbb{P} over μ is a sequence $\langle M_\alpha : \alpha < \mu \rangle$ of elementary submodels of some "sufficiently large" fragment H of the set-theoretic universe such that

- $\mathbb{P} \in M_\alpha$, M_α is countably closed, and $|M_\alpha| = \aleph_1$ for every α,
- $\mathbb{P} \subseteq \bigcup_{\alpha < \mu} M_\alpha$
Definition

A high Davies tree for \(\mathbb{P} \) over \(\mu \) is a sequence \(\langle M_\alpha : \alpha < \mu \rangle \) of elementary submodels of some "sufficiently large" fragment \(H \) of the set-theoretic universe such that

- \(\mathbb{P} \in M_\alpha, \ M_\alpha \) is countably closed, and \(|M_\alpha| = \aleph_1 \) for every \(\alpha \),
- \(\mathbb{P} \subseteq \bigcup_{\alpha < \mu} M_\alpha \), and
- for each \(\alpha < \mu \), there is a countable set \(N_\alpha \) of countably closed elementary submodels of \(H \), each containing \(\mathbb{P} \), with
 \[
 \bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha.
 \]
Definition

A high Davies tree for \mathbb{P} over μ is a sequence $\langle M_\alpha : \alpha < \mu \rangle$ of elementary submodels of some "sufficiently large" fragment H of the set-theoretic universe such that

- $\mathbb{P} \in M_\alpha$, M_α is countably closed, and $|M_\alpha| = \aleph_1$ for every α,
- $\mathbb{P} \subseteq \bigcup_{\alpha < \mu} M_\alpha$, and
- for each $\alpha < \mu$, there is a countable set N_α of countably closed elementary submodels of H, each containing \mathbb{P}, with

$$\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha.$$

Theorem (Soukup and Soukup; 2017)

Assuming GCH + \Box, if \mathbb{P} is any set and μ any regular uncountable cardinal with $\mu \geq |\mathbb{P}|$, then there is a high Davies tree for \mathbb{P} over μ.

Will Brian
Limited-information strategies in Banach-Mazur games
High Davies trees are so named because they can be constructed by enumerating the leaves of a tree of elementary submodels.

\[M_{\alpha,0} \prec M_{\alpha,1} \prec \cdots \prec M_{\alpha,\beta} \prec M_{\alpha,\beta+1} \prec \cdots \]

\[M_0 \prec M_1 \prec M_2 \prec \cdots \prec M_{\alpha} \prec M_{\alpha+1} \prec \cdots \]

\[H \]
even higher Davies trees

High Davies trees are so named because they can be constructed by enumerating the leaves of a tree of elementary submodels.

\[
\begin{array}{cccccc}
M_{\alpha,0} & M_{\alpha,1} & \cdots & M_{\alpha,\beta} & M_{\alpha,\beta+1} & \cdots \\
M_0 & M_1 & M_2 & \cdots & M_\alpha & M_{\alpha+1} & \cdots \\
\end{array}
\]

High Davies trees can be used to prove that \(\nabla \) holds for ccc posets.
High Davies trees are so named because they can be constructed by enumerating the leaves of a tree of elementary submodels.

$$\cdots$$

$$M_{\alpha,0} \prec M_{\alpha,1} \prec \cdots \prec M_{\alpha,\beta} \prec M_{\alpha,\beta+1} \prec \cdots$$

$$M_0 \prec M_1 \prec M_2 \prec \cdots \prec M_\alpha \prec M_{\alpha+1} \prec \cdots$$

High Davies trees can be used to prove that ∇ holds for ccc posets. For the general case of κ-cc posets, we needed a version with stronger closure properties, called κ-high Davies trees.
High Davies trees are so named because they can be constructed by enumerating the leaves of a tree of elementary submodels.

\[
\begin{array}{c}
\cdots \\
M_{\alpha,0} & M_{\alpha,1} & \cdots & M_{\alpha,\beta} & M_{\alpha,\beta+1} & \cdots \\
M_0 & M_1 & M_2 & \cdots & M_\alpha & M_{\alpha+1} & \cdots \\
\end{array}
\]

High Davies trees can be used to prove that ∇ holds for ccc posets. For the general case of κ-cc posets, we needed a version with stronger closure properties, called κ-high Davies trees. But in what follows, we restrict our attention to the ccc case.
Proof sketch: from high Davies trees to ∇

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \preceq_α of M_α with order type ω_1. Then define a well ordering of \mathbb{P} as follows:

- If p appears in an earlier part of the Davies tree than q does, by which we mean that there is some α with $p \in M_\alpha$ but $q \not\in \bigcup \xi \leq \alpha M_\xi$, then we define $p \preceq q$.
- Similarly, if q appears earlier than p then $q \preceq p$.
- Otherwise, there is some (unique) $\alpha < \mu$ such that $p, q \in M_\alpha \setminus \bigcup \xi < \alpha M_\xi$. In this case we define $p \preceq q$ if and only if $p \preceq_\alpha q$.

This is the promised “special enumeration” of \mathbb{P} that will make our greedy algorithm work.
Proof sketch: from high Davies trees to ∇

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \sqsubset_α of M_α with order type ω_1.
Proof sketch: from high Davies trees to ∇

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \sqsubset_α of M_α with order type ω_1. Then define a well ordering of \mathbb{P} as follows:
Proof sketch: from high Davies trees to ∇

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \sqsubset_α of M_α with order type ω_1. Then define a well ordering of \mathbb{P} as follows: for every $p, q \in \mathbb{P}$,

- If p appears in an earlier part of the Davies tree than q does, by which we mean that there is some α with $p \in M_\alpha$ but $q \notin \bigcup_{\xi \leq \alpha} M_\xi$, then we define $p \sqsubset q$.

- Similarly, if q appears earlier than p then $q \sqsubset p$.

Otherwise, there is some (unique) $\alpha < \mu$ such that $p, q \in M_\alpha \setminus \bigcup_{\xi < \alpha} M_\xi$. In this case we define $p \sqsubset q$ if and only if $p \sqsubset_\alpha q$.

This is the promised “special enumeration” of \mathbb{P} that will make our greedy algorithm work.
Proof sketch: from high Davies trees to ∇

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \sqsupseteq_α of M_α with order type ω_1. Then define a well ordering of \mathbb{P} as follows: for every $p, q \in \mathbb{P}$,

- If p appears in an earlier part of the Davies tree than q does, by which we mean that there is some α with $p \in M_\alpha$ but $q \notin \bigcup_{\xi \leq \alpha} M_\xi$, then we define $p \mathrel{\sqsupseteq} q$.
- Similarly, if q appears earlier than p then $q \mathrel{\sqsubseteq} p$.
Proof sketch: from high Davies trees to ∇

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \sqsupseteq_α of M_α with order type ω_1. Then define a well ordering of \mathbb{P} as follows: for every $p, q \in \mathbb{P}$,

- If p appears in an earlier part of the Davies tree than q does, by which we mean that there is some α with $p \in M_\alpha$ but $q \notin \bigcup_{\xi \leq \alpha} M_\xi$, then we define $p \sqsupseteq q$.
- Similarly, if q appears earlier than p then $q \sqsupseteq p$.
- Otherwise, there is some (unique) $\alpha < \mu$ such that $p, q \in M_\alpha \setminus \bigcup_{\xi < \alpha} M_\xi$. In this case we define $p \sqsupseteq q$ if and only if $p \sqsupseteq_\alpha q$. This is the promised "special enumeration" of \mathbb{P} that will make our greedy algorithm work.

Will Brian

Limited-information strategies in Banach-Mazur games
Proof sketch: from high Davies trees to ▽

Let \mathbb{P} be a separative ccc poset, and suppose $\langle M_\alpha : \alpha < \mu \rangle$ is a
high Davies tree for \mathbb{P} over some $\mu \geq |\mathbb{P}|$.

For each $\alpha < \kappa$, recall that $|M_\alpha| = \aleph_1$ and fix a well ordering \sqsupseteq_α of
M_α with order type ω_1. Then define a well ordering of \mathbb{P} as follows:
for every $p, q \in \mathbb{P}$,

- If p appears in an earlier part of the Davies tree than q does,
 by which we mean that there is some α with $p \in M_\alpha$ but
 $q \notin \bigcup_{\xi \leq \alpha} M_\xi$, then we define $p \sqsupseteq q$.
- Similarly, if q appears earlier than p then $q \sqsubseteq p$.
- Otherwise, there is some (unique) $\alpha < \mu$ such that
 $p, q \in M_\alpha \setminus \bigcup_{\xi < \alpha} M_\xi$. In this case we define $p \sqsupseteq q$ if and
 only if $p \sqsupseteq_\alpha q$.

This is the promised "special enumeration" of \mathbb{P} that will make our
greedy algorithm work.
Proof sketch: from high Davies trees to ∇

As before, define

$$D = \{ q \in \mathbb{P} : \text{if } p \sqsubseteq q \text{ then } p \text{ is not an extension of } q \}.$$
Proof sketch: from high Davies trees to ▼

As before, define

\[\mathcal{D} = \{ q \in \mathcal{P} : \text{if } p \sqsubset q \text{ then } p \text{ is not an extension of } q \} \].

• \(\mathcal{D} \) is dense in \(\mathcal{P} \), because for any given \(p \in \mathcal{P} \), the \(\sqsubseteq \)-least element of \(\{ q \in \mathcal{P} : q \text{ extends } p \} \) must be in \(\mathcal{D} \).
Proof sketch: from high Davies trees to ∇

As before, define

$$\mathbb{D} = \{ q \in \mathbb{P} : \text{if } p \sqsubset q \text{ then } p \text{ is not an extension of } q \}.$$

- \mathbb{D} is dense in \mathbb{P}, because for any given $p \in \mathbb{P}$, the \sqsubseteq-least element of $\{ q \in \mathbb{P} : q \text{ extends } p \}$ must be in \mathbb{D}.
- For any given $p \in \mathbb{P}$, our definition of \mathbb{D} ensures that $\{ d \in \mathbb{D} : p \text{ extends } d \} \subseteq \{ d \in \mathbb{P} : d \sqsubseteq p \}$.
Proof sketch: from high Davies trees to ∇

As before, define

$$D = \{ q \in P : \text{if } p \sqsubset q \text{ then } p \text{ is not an extension of } q \}.$$

- D is dense in P, because for any given $p \in P$, the \sqsubseteq-least element of $\{ q \in P : q \text{ extends } p \}$ must be in D.
- For any given $p \in P$, our definition of D ensures that $\{ d \in D : p \text{ extends } d \} \subseteq \{ d \in P : d \sqsubseteq p \}$.

To prove that ∇ holds for P, we need to show that for any $p \in P$, $\{ d \in D : p \text{ extends } d \}$ is countable.
Proof sketch: from high Davies trees to ▽

As before, define

\[\mathbb{D} = \{q \in \mathbb{P} : \text{if } p \sqsubseteq q \text{ then } p \text{ is not an extension of } q\} \].

- \(\mathbb{D} \) is dense in \(\mathbb{P} \), because for any given \(p \in \mathbb{P} \), the \(\sqsubseteq \)-least element of \(\{q \in \mathbb{P} : q \text{ extends } p\} \) must be in \(\mathbb{D} \).
- For any given \(p \in \mathbb{P} \), our definition of \(\mathbb{D} \) ensures that \(\{d \in \mathbb{D} : p \text{ extends } d\} \subseteq \{d \in \mathbb{P} : d \sqsubseteq p\} \).

To prove that ▽ holds for \(\mathbb{P} \), we need to show that for any \(p \in \mathbb{P} \), \(\{d \in \mathbb{D} : p \text{ extends } d\} \) is countable.

Aiming for a contradiction, let us suppose \(\{d \in \mathbb{D} : p \text{ extends } d\} \) is uncountable; furthermore, let us suppose that \(p \) is the \(\sqsubseteq \)-least element of \(\mathbb{P} \) with this property.
Proof sketch: from high Davies trees to ▽

As before, define

\[D = \{ q \in P : \text{if } p \sqsubseteq q \text{ then } p \text{ is not an extension of } q \} \].

- \(D \) is dense in \(P \), because for any given \(p \in P \), the \(\sqsubseteq \)-least element of \(\{ q \in P : q \text{ extends } p \} \) must be in \(D \).
- For any given \(p \in P \), our definition of \(D \) ensures that \(\{ d \in D : p \text{ extends } d \} \subseteq \{ d \in P : d \sqsubseteq p \} \).

To prove that ▽ holds for \(P \), we need to show that for any \(p \in P \), \(\{ d \in D : p \text{ extends } d \} \) is countable.

Aiming for a contradiction, let us suppose \(\{ d \in D : p \text{ extends } d \} \) is uncountable; furthermore, let us suppose that \(p \) is the \(\sqsubseteq \)-least element of \(P \) with this property. Let \(\alpha \) denote the stage at which \(p \) appears in our Davies tree: i.e., \(p \in M_\alpha \setminus \bigcup_{\xi < \alpha} M_\xi \).
Proof sketch: from high Davies trees to \bigtriangledown

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p.

Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set N_α of countably closed elementary submodels of H, each containing P, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha$.

By the pigeonhole principle, there is some $N \in N_\alpha$ such that $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

Because N is a countably closed model of (enough of) ZFC and P has the ccc, N contains some $p' \in P$ that extends every member of the uncountable set $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$.

But $Q \subseteq D$, so p' extends uncountably many elements of D.

Because $p' \in N \subseteq \bigcup_{\xi < \alpha} M_\xi$, we also have $p' \sqsupseteq p$.

This contradicts our choice of p.

Will Brian
Limited-information strategies in Banach-Mazur games
Proof sketch: from high Davies trees to ∇

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p. Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.
Proof sketch: from high Davies trees to ▽

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p. Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set N_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha$.

Proof sketch: from high Davies trees to ∇

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p. Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set \mathcal{N}_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup \mathcal{N}_\alpha$. By the pigeonhole principle, there is some $N \in \mathcal{N}_\alpha$ such that $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.
Proof sketch: from high Davies trees to \Diamond

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p. Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set \mathcal{N}_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup \mathcal{N}_\alpha$. By the pigeonhole principle, there is some $N \in \mathcal{N}_\alpha$ such that $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

Because N is a countably closed model of (enough of) ZFC and \mathbb{P} has the ccc, N contains some $p' \in \mathbb{P}$ that extends every member of the uncountable set $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$.
Proof sketch: from high Davies trees to \Diamond

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \Box-predecessor of p. Because p has only countably many \Box-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set N_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha$. By the pigeonhole principle, there is some $N \in N_\alpha$ such that $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

Because N is a countably closed model of (enough of) ZFC and \mathbb{P} has the ccc, N contains some $p' \in \mathbb{P}$ that extends every member of the uncountable set $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$.

But $Q \subseteq D$, so p' extends uncountably many elements of D.

Proof sketch: from high Davies trees to ∇

Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p. Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set N_α of countably closed elementary submodels of H, each containing P, with $\bigcup_{\xi < \alpha} M_\xi = \bigcup N_\alpha$. By the pigeonhole principle, there is some $N \in N_\alpha$ such that $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$ is uncountable.

Because N is a countably closed model of (enough of) ZFC and P has the ccc, N contains some $p' \in P$ that extends every member of the uncountable set $N \cap Q \cap \bigcup_{\xi < \alpha} M_\xi$.

But $Q \subseteq D$, so p' extends uncountably many elements of D. Because $p' \in N \subseteq \bigcup_{\xi < \alpha} M_\xi$, we also have $p' \sqsubseteq p$.

Will Brian
Limited-information strategies in Banach-Mazur games
Let $Q = \{ q \in D : p \text{ extends } d \}$, and recall that every member of Q is a \sqsubseteq-predecessor of p. Because p has only countably many \sqsubseteq-predecessors in M_α, $Q \cap \bigcup_{\xi<\alpha} M_\xi$ is uncountable.

By the definition of a high Davies tree, there is a countable set \mathcal{N}_α of countably closed elementary submodels of H, each containing \mathbb{P}, with $\bigcup_{\xi<\alpha} M_\xi = \bigcup \mathcal{N}_\alpha$. By the pigeonhole principle, there is some $N \in \mathcal{N}_\alpha$ such that $N \cap Q \cap \bigcup_{\xi<\alpha} M_\xi$ is uncountable.

Because N is a countably closed model of (enough of) ZFC and \mathbb{P} has the ccc, N contains some $p' \in \mathbb{P}$ that extends every member of the uncountable set $N \cap Q \cap \bigcup_{\xi<\alpha} M_\xi$.

But $Q \subseteq D$, so p' extends uncountably many elements of D. Because $p' \in N \subseteq \bigcup_{\xi<\alpha} M_\xi$, we also have $p' \sqsubseteq p$.

This contradicts our choice of p. \qed
GCH and ∇

Our proof only uses □ on singular cardinals. Hence

Corollary

*If \mathbb{P} is a separative poset with $|\mathbb{P}| \leq \aleph_\omega$ and GCH holds below $|\mathbb{P}|$, then ∇ holds for \mathbb{P}.***
Our proof only uses □ on singular cardinals. Hence

Corollary

If \(P \) is a separative poset with \(|P| \leq \aleph_\omega \) and GCH holds below \(|P| \), then \(\nabla \) holds for \(P \).

However, some form of □ on singular cardinals is necessary.

Theorem (Brian, Dow, and Shelah; 2020)

Assuming the existence of a huge cardinal, there is a model satisfying GCH but not \(\nabla \). Therefore GCH does not imply \(\nabla \) (unless huge cardinals are inconsistent).
GCH and \(\nabla \)

Our proof only uses \(\square \) on singular cardinals. Hence

Corollary

If \(\mathbb{P} \) is a separative poset with \(|\mathbb{P}| \leq \aleph_\omega \) and GCH holds below \(|\mathbb{P}| \), then \(\nabla \) holds for \(\mathbb{P} \).

However, some form of \(\square \) on singular cardinals is necessary.

Theorem (Brian, Dow, and Shelah; 2020)

Assuming the existence of a huge cardinal, there is a model satisfying GCH but not \(\nabla \). Therefore GCH does not imply \(\nabla \) (unless huge cardinals are inconsistent).

To show that GCH does not imply \(\nabla \) requires getting a model of GCH+ the failure of \(\square \) on some singular cardinals. The existence of such a model requires fairly strong large cardinal axioms.
GCH and ▽

Theorem (Brian, Dow, and Shelah; 2020)

Assuming the existence of a huge cardinal, there is a model satisfying GCH but not ▽.

Proof idea: The proof uses a form of Chang’s conjecture known as Chang’s conjecture for \aleph_ω, denoted $(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$. It is known that $\text{GCH} + (\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent relative to a huge cardinal.
Theorem (Brian, Dow, and Shelah; 2020)

Assuming the existence of a huge cardinal, there is a model satisfying GCH but not ∇.

Proof idea: The proof uses a form of Chang’s conjecture known as Chang’s conjecture for \aleph_ω, denoted $(\aleph_\omega+1, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$. It is known that $\text{GCH} + (\aleph_\omega+1, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$ is consistent relative to a huge cardinal.

We construct a ccc poset P (a modified finite support product of Hechler forcings), and then use $(\aleph_\omega+1, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0)$, to show that P fails to satisfy ∇.

Will Brian

Limited-information strategies in Banach-Mazur games
Theorem (Brian, Dow, and Shelah; 2020)

Assuming the existence of a huge cardinal, there is a model satisfying GCH but not ▽.

Proof idea: The proof uses a form of Chang’s conjecture known as Chang’s conjecture for \(\aleph_{\omega} \), denoted \((\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)\). It is known that GCH + \((\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)\) is consistent relative to a huge cardinal.

We construct a ccc poset \(\mathbb{P} \) (a modified finite support product of Hechler forcings), and then use \((\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)\), to show that \(\mathbb{P} \) fails to satisfy ▽.

We also show that if we begin with a model of GCH + \((\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)\) and then force with a finite support product of \(\aleph_1 \) amoeba forcings, then in the extension GCH still holds but ▽ fails for the measure algebra of weight \(\aleph_{\omega} \).
If we do not insist on GCH, it is much easier to get ∇ to fail.
If we do not insist on GCH, it is much easier to get ∇ to fail.

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

∇ implies $b = \aleph_1$.

Proof idea: Using $b > \aleph_1$, a pigeonhole argument shows that the Hechler forcing fails to satisfy ∇. A little more generally, ∇ fails whenever there is a descending sequence in the poset $(\mathcal{P}(\omega)/\text{fin}, \subseteq \ast)$ with order type ω_2. However, ∇ does not imply GCH or even CH.
If we do not insist on GCH, it is much easier to get ∇ to fail.

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

∇ implies $b = \aleph_1$.

Proof idea: Using $b > \aleph_1$, a pigeonhole argument shows that the Hechler forcing fails to satisfy ∇.
If we do not insist on GCH, it is much easier to get ∇ to fail.

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

∇ implies $b = \aleph_1$.

Proof idea: Using $b > \aleph_1$, a pigeonhole argument shows that the Hechler forcing fails to satisfy ∇.

A little more generally, ∇ fails whenever there is a descending sequence in the poset $(\mathcal{P}(\omega)/\text{fin}, \subseteq^*)$ with order type ω_2.
Telgársky’s Conjecture
\(GCH, \square, \text{ and } \bigtriangleup \)

\(\bigtriangleup \) without CH

If we do not insist on GCH, it is much easier to get \(\bigtriangleup \) to fail.

Theorem (Brian, Dow, Milovich, and Yengulalp; 2020)

\(\bigtriangleup \) implies \(b = \aleph_1. \)

Proof idea: Using \(b > \aleph_1 \), a pigeonhole argument shows that the Hechler forcing fails to satisfy \(\bigtriangleup \).

A little more generally, \(\bigtriangleup \) fails whenever there is a descending sequence in the poset \((\mathcal{P}(\omega)/\text{fin}, \subseteq^*) \) with order type \(\omega_2 \).

However, \(\bigtriangleup \) does not imply GCH or even CH.

Theorem (Brian, Dow, and Shelah; 2020)

If GCH + \(\square \) holds, then \(\bigtriangleup \) still holds after forcing with \(\text{Fn}(\kappa, 2) \) to add \(\kappa \) Cohen reals (for any cardinal \(\kappa \)). Therefore \(\bigtriangleup \) does not imply CH.
Open questions

Question

Is it consistent that there is a sequence of T_3 spaces witnessing Telgársky’s conjecture?
Open questions

Question

Is it consistent that there is a sequence of T_3 spaces witnessing Telgársky’s conjecture?

Question

Is there a sequence of non-T_3 spaces witnessing Telgársky’s conjecture?
Open questions

Question

Is it consistent that there is a sequence of T_3 spaces witnessing Telgársky’s conjecture?

Question

Is there a sequence of non-T_3 spaces witnessing Telgársky’s conjecture?

Question

How badly can ▽ fail? Specifically, is it consistent to have a ccc poset \mathbb{P} such that for every dense $\mathbb{D} \subseteq \mathbb{P}$, there is some $p \in \mathbb{P}$ with $|\{d \in \mathbb{D} : p \text{ extends } d\}| \geq \mathfrak{c}^+$? Can we get the size arbitrarily high above \mathfrak{c}?
Thank you for listening