FACTORIZING A MINIMAL ULTRAFILTER INTO A THICK PART AND A SYNDETIC PART

WILL BRIAN AND NEIL HINDMAN

Abstract. Let S be an infinite discrete semigroup. The operation on S extends uniquely to the Stone-Čech compactification βS making βS a compact right topological semigroup with S contained in its topological center. As such, βS has a smallest two sided ideal, $K(\beta S)$. An ultrafilter p on S is minimal if and only if $p \in K(\beta S)$.

We show that any minimal ultrafilter p factors into a thick part and a syndetic part. That is, there exist filters F and G such that F consists only of thick sets, G consists only of syndetic sets, and p is the unique ultrafilter containing $F \cup G$.

Letting $L = \hat{F}$ and $C = \hat{G}$, the sets of ultrafilters containing F and G respectively, we have that L is a minimal left ideal of βS, C meets every minimal left ideal of βS in exactly one point, and $L \cap C = \{p\}$. We show further that $K(\beta S)$ can be partitioned into relatively closed sets, each of which meets each minimal left ideal in exactly one point.

With some weak cancellation assumptions on S, one has also that for each minimal ultrafilter p, $S^* \setminus \{p\}$ is not normal. In particular, if p is a member of either of the disjoint sets $K(\beta N, +)$ or $K(\beta N, \cdot)$, then $N^* \setminus \{p\}$ is not normal.

1. Introduction

Throughout this paper S will denote an infinite discrete semigroup with operation \cdot. The Stone-Čech compactification βS of S is the set of ultrafilters on S, with the principal ultrafilters being identified with the points of S. We let $S^* = \beta S \setminus S$. The operation \cdot extends to βS so that $(\beta S, \cdot)$ is a right topological semigroup, meaning that for each $p \in \beta S$, the function ρ_p defined by $\rho_p(q) = q \cdot p$ is continuous, with S contained in the topological center, meaning that for each $x \in S$, the function λ_x defined by $\lambda_x(q) = x \cdot q$ is continuous. Given $p, q \in \beta S$ and $A \subseteq S$, we have $A \in p \cdot q$ if and only if $\{x \in S : x^{-1}A \in q\} \in p$, where $x^{-1}A = \{y \in S : x \cdot y \in A\}$.

As does any compact Hausdorff right topological semigroup, βS has a smallest two sided ideal, $K(\beta S)$. According to the structure theorem [7, 2010 Mathematics Subject Classification. Primary: 54D35, 54D80, 22A15 Secondary: 06E15, 03E05.

Key words and phrases. Stone-Čech compactification, minimal ultrafilters, thick sets, syndetic sets, minimal left/right ideals, butterfly and non-normality points.

Both authors wish to thank Dona Strauss for her insightful comments on an earlier draft of this paper, and for providing us with the proofs of Lemma 3.10 and Theorem 3.11, allowing us to remove some extraneous hypotheses from these results.
Theorem 1.64], we have
\[
K(\beta S) = \bigcup \{L \subseteq \beta S : L \text{ is a minimal left ideal}\} = \bigcup \{R \subseteq \beta S : R \text{ is a minimal right ideal}\},
\]
where each of these unions is a disjoint union. The minimal left ideals are closed while the minimal right ideals are usually not closed. Furthermore, if \(L\) is a minimal left ideal and \(R\) is a minimal right ideal then
- \(L \cap R = R : L \neq \emptyset\);
- \(L \cap R\) is a group, and it contains exactly one element of the set \(E(R)\) of idempotents in \(R\), namely the identity of the group.

In fact, the structure theorem says more than this, but this summary is sufficient for what follows. Furthermore,
- If \(G = L \cap R\), then the map \((p, e) \mapsto p \cdot e\) is a bijection \(G \times E(R) \to R\).

This last assertion follows from [7, Theorem 2.11(b)], which asserts that if \(L'\) is a minimal left ideal of \(\beta S\) and \(e\) is the identity of \(L' \cap R\), then the restriction of \(\rho_e\) to \(G = L' \cap R\) is an isomorphism and a homeomorphism onto \(L' \cap R\). The idempotent ultrafilters in \(K(\beta S)\) are called minimal idempotents and the elements of \(K(\beta S)\) are called minimal ultrafilters.

We will show in Theorem 2.1 that if \(L\) is a minimal left ideal of \(\beta S\), \(R\) is a minimal right ideal, \(p \in L \cap R\), and \(C = \overline{p \cdot E(R)}\), then \(L \cap C = \{p\}\) and \(C\) meets each each minimal left ideal in exactly one point. Further, \(\{q \cdot E(R') : R' \text{ is a minimal right ideal and } q \in L \cap R'\}\) partitions \(K(\beta S)\) into relatively closed sets. The fact that the partition elements are closed in \(K(\beta S)\) can be seen as a topological addition to the (algebraic) structure theorem described above. Particularly, in the final bullet point, our result shows that the given bijection has at least one nice topological property: the images of the “vertical sections” \(\{p\} \times E(R)\) of \(G \times E(R)\), namely the sets of the form \(p \cdot E(R)\), are closed in \(R\). (Note that the images of horizontal sections are also closed in \(R\), but this is not difficult to prove; it follows from the fact that minimal left ideals of \(\beta S\) are closed.)

Closed subsets of \(\beta S\) correspond naturally to filters on \(S\). For a filter \(\mathcal{F}\) on \(S\), let \(\overline{\mathcal{F}} = \{p \in \beta S : \mathcal{F} \subseteq p\} = \bigcap\{A : A \in \mathcal{F}\}\). Given any nonempty subset \(X\) of \(\beta S\), \(\bigcap X\) is a filter, and if \(\mathcal{F} = \bigcap X\), then \(\overline{\mathcal{F}} = X\). In terms of filters, our results show that every minimal ultrafilter \(p\) on \(S\) can be “factored” into two filters \(\mathcal{F}\) and \(\mathcal{G}\), where \(\mathcal{F}\) consists entirely of thick sets and \(\mathcal{G}\) consists entirely of syndetic sets. The ultrafilter \(p\) factors into \(\mathcal{F}\) and \(\mathcal{G}\) in the sense that \(p\) is the filter generated by \(\mathcal{F} \cup \mathcal{G}\).

One immediate consequence of this factorization is that every minimal ultrafilter \(p\) on \(\mathbb{N}\) is a butterfly point of \(\mathbb{N}^*\). (When we refer to a minimal ultrafilter on \(\mathbb{N}\) without specifying the operation, we mean a member of \(K(\beta \mathbb{N}, +)\).) Recall that a butterfly point of a space \(X\) is a point \(p\) such that, for some \(A, B \subseteq X \setminus \{p\}\), we have \(A \cap B = \{p\}\). It is an open problem whether every point of \(\mathbb{N}^*\) is a butterfly point (e.g., it is “classic problem IX” in Peter Nyikos’s Classic Problems in Topology series [10]).
With a little more work, we show that every minimal ultrafilter \(p\) is a non-normality point of \(\mathbb{N}^*\), which means that \(\mathbb{N}^* \setminus \{p\}\) is not normal. It is a longstanding open problem whether every point of \(\mathbb{N}^*\) is a non-normality point (e.g., it is problem 3 on Jan van Mill’s list of open problems in [9]). This problem is closely related to the one mentioned in the previous paragraph, because every non-normality point is also a butterfly point. It is known that the answer to both problems is consistently positive: for example, \(\text{CH}\) implies that every point of \(\mathbb{N}^*\) is a non-normality point. (This is due to Rajagopalan [11] and Warren [12] independently.) It is also known that, using only \(\text{ZFC}\), at least some points of \(\mathbb{N}^*\) are non-normality points: for example, this holds when \(p\) is not Rudin-Frol’ık minimal [2]. Our results add to the list of known non-normality points of \(\mathbb{N}^*\).

The result that minimal ultrafilters are butterfly points (respectively, non-normality points) will be proved in a general setting: it holds in \(\mathcal{S}^*\) whenever \(\mathcal{S}\) satisfies certain cancellation properties. Under the additional assumption that \(\mathcal{S}\) is countable, we also prove that for a minimal right ideal \(R\) of \(\beta\mathcal{S}\) and any minimal ultrafilter \(p \in R\), the spaces \(E(R)\) and \(p \cdot E(R)\) are \(P\)-spaces and not Borel in \(\beta\mathcal{S}\).

2. Closed transversals and factoring a minimal ultrafilter

In this section we establish results that do not require any cancellation assumptions about \(\mathcal{S}\), beginning by producing closed transversals for the set of minimal left ideals. (By a transversal for this set, we mean a set which meets each minimal left ideal in exactly one point.)

A fact that we will use repeatedly is that if \(R\) is a minimal right ideal of \(\beta\mathcal{S}\) and \(e \in E(R)\), then \(e\) is a left identity for \(R\), which means that \(e \cdot p = e\) for all \(p \in R\). (In particular, if \(e, f \in E(R)\) then \(e \cdot f = f\) and \(f \cdot e = e\).) To see this, note that \(e \cdot \beta\mathcal{S}\) is a right ideal contained in \(R\), so \(e \cdot \beta\mathcal{S} = R\) by minimality. Thus \(p \in R\) implies \(p = e \cdot q\) for some \(q \in \beta\mathcal{S}\), so that \(p = e \cdot q = e \cdot e \cdot q = e \cdot p\).

Theorem 2.1. Let \(L\) and \(R\) be minimal left and right ideals of \(\beta\mathcal{S}\), respectively, and let \(p \in L \cap R\). Then
\[
L \cap p \cdot E(R) = \{p\}.
\]
Furthermore,
\begin{enumerate}

 \item If \(L'\) is any minimal left ideal of \(\beta\mathcal{S}\), then
 \[
 L' \cap p \cdot E(R) = \{p \cdot e\}
 \]
 where \(e\) is the (unique) idempotent contained in \(L' \cap R\). In particular, \(p \cdot E(R)\) meets every minimal left ideal in exactly one point.

 \item \(\{q \cdot E(R) : q \in L \cap R\}\) is a partition of \(R\) into relatively closed sets (i.e., they are closed in \(R\)), and
 \[
 \{q \cdot E(R') : R' \text{ is a minimal right ideal and } q \in L \cap R'\}
 \]
 is a partition of \(K(\beta\mathcal{S})\) into relatively closed sets.
\end{enumerate}
Proof. Let p be a minimal ultrafilter in βS, let L and R denote the minimal left and right ideals of βS, respectively, that contain p, and let f be the identity of $L \cap R$. Then $p = p \cdot f$ so $p \in L \cap p \cdot E(R)$.

Suppose $q \in L \cap p \cdot E(R)$. We will show that $p = q$. Let R' denote the minimal right ideal of βS containing q. For each $e \in E(R)$, we have $e \cdot f = f$ so $p \cdot e \cdot f = p \cdot f = p$. Thus the function ρ_f is constant on the set $p \cdot E(R)$, with value p. But ρ_f is continuous on all of βS, so this means that ρ_f is constant on $p \cdot E(R)$ with value p. In particular, $q \cdot f = p$. Because R' is a right ideal containing q we have $q \cdot f \in R'$; but $p \in R$, so it follows that $R' = R$. Thus q and p are both members of the group $L \cap R$. As f is the identity element of this group, $q \cdot f = p$ implies $q = p$, as desired, completing the proof that $L \cap p \cdot E(R) = \{p\}$.

To prove (1), suppose L' is any minimal left ideal of βS, and let e denote the identity element of the group $L' \cap R$. Clearly $p \cdot e \in p \cdot E(R)$, so that $p \cdot e \in L' \cap p \cdot E(R)$, and we wish to show that it is the only element of this set. Suppose $q \in L' \cap p \cdot E(R)$. Exactly as in the proof above, we may show that the function ρ_e is constant on $p \cdot E(R)$ with value $p \cdot e$. Thus $q \cdot e = p \cdot e \cdot e$. Observe that $p \cdot e \in L' \cap R$ (it is in L' because $e \in L'$ and L' is a left ideal, and it is in R because $p \in R$ and R is a right ideal). But $L' \cap R$ is a group with identity element e, so, if we know that $q \in L' \cap R$, then $q \cdot e = p \cdot e \cdot e$ implies $q = p \cdot e$, as desired. We have that $q \in L'$. To see that $q \in R$, let R' be the minimal right ideal with $q \in R'$. Since $q \cdot e = p \cdot e$, we have that $R = R'$.

To prove (2), let $G = L \cap R$ and let $h : G \times E(R) \to R$ be the function $h(q,e) = q \cdot e$. We noted in the introduction that h is a bijection, which implies that $\{q \cdot E(R) : q \in G\}$ is a partition of R, which implies that $\{q \cdot E(R') : R'$ is a minimal right ideal and $q \in L \cap R'\}$ is a partition of $K(\beta S)$. Finally, all sets of the form $q \cdot E(R)$ are closed in $K(\beta S)$, because any point of $(K(\beta S) \cap q \cdot E(R)) \setminus q \cdot E(R)$ would be a member of some minimal left ideal, and this contradicts (1).

Given a set X, we let $P_f(X)$ be the set of finite nonempty subsets of X. A subset A of S is called

- **thick** if for each $F \in P_f(S)$, there exists $x \in S$ such that $Fx \subseteq A$, or, equivalently, if the collection of all sets of the form $\{s^{-1}A : s \in S\}$ has the finite intersection property.

- **syndetic** if there is some $F \in P_f(S)$ such that $S = \bigcup_{s \in F} s^{-1}A$.

Notice that if A is thick and B is syndetic, then $A \cap B \neq \emptyset$. (To see this, pick $F \in P_f(S)$ such that $S = \bigcup_{s \in F} s^{-1}B$ and pick $x \in S$ such that $Fx \subseteq A$. Pick $s \in F$ such that $sx \in A \cap B$.)

For the semigroup $(\mathbb{N}, +)$, $A \subseteq \mathbb{N}$ is thick if and only if it contains arbitrarily long intervals, and is syndetic if and only if it has bounded gaps, which means that there is some $k \in \mathbb{N}$ such that every interval of length k contains a point of A.

Let Θ denote the family of thick subsets of S, and let Σ denote the family of syndetic subsets of S. These two families of sets are dual to each other, in the following sense, which follows immediately from the definitions.

Lemma 2.2. A set is thick if and only if its complement fails to be syndetic, and it is syndetic if and only if its complement fails to be thick.

The families Θ and Σ are related to $K(\beta S)$ by the following lemma.

Lemma 2.3. If $A \subseteq S$ then

1. $A \in \Theta$ if and only if \hat{A} contains a minimal left ideal of βS.
2. $A \in \Sigma$ if and only if \hat{A} meets every minimal left ideal of βS.

Proof. This is part of [1, Theorem 2.9], or see [7, Theorem 4.48].

Let us say that a filter F on S is Θ-maximal if $F \subseteq \Theta$, and if every filter properly extending F contains some set not in Θ. Similarly, let us say that a filter G on S is Σ-maximal if $G \subseteq \Sigma$, and if every filter properly extending G contains some set not in Σ. The existence of Θ-maximal filters and Σ-maximal filters is ensured by Zorn’s Lemma.

Note that Θ-maximal filters on \mathbb{N} are never ultrafilters: for example, they will contain neither the set of even numbers nor the set of odd numbers. Neither are Σ-maximal ultrafilters on \mathbb{N} ever maximal. In fact, if one identifies subsets of \mathbb{N} with points of the Cantor space via characteristic functions, then one can show that Σ is a meager, measure-zero subset of the Cantor space. Hence every Σ-maximal filter on \mathbb{N} is also meager and null: in this sense, these filters are very far from being ultrafilters.

Lemma 2.4. A filter F on S is a Θ-maximal filter if and only if \hat{F} is a minimal left ideal of βS.

Proof. This is [4, Proposition 3.2].

Lemma 2.5. Let F be a filter on S. Then

1. $F \subseteq \Theta$ if and only if \hat{F} contains a minimal left ideal.
2. $F \subseteq \Sigma$ if and only if \hat{F} meets every minimal left ideal.

Proof. If $F \subseteq \Theta$, then, by an application of Zorn’s Lemma, F can be extended to a Θ-maximal filter G. But then $\hat{F} \supseteq \hat{G}$, so \hat{F} contains a minimal left ideal by Lemma 2.4. This proves the “only if” direction of (1).

If $F \not\subseteq \Theta$, then there is some $A \in F \setminus \Theta$. But then $\hat{A} \supseteq \hat{F}$, so \hat{F} contains no minimal left ideals by Lemma 2.3. This proves the “if” direction of (1).

The “if” direction of (2) is proved just as it was for (1). Supposing $F \not\subseteq \Sigma$, there is some $A \in F \setminus \Sigma$. But then $\hat{A} \supseteq \hat{F}$, so \hat{F} fails to meet some minimal left ideal by Lemma 2.3.

For the “only if” direction of (2), suppose $F \subseteq \Sigma$ and let L be any minimal left ideal. L is closed in βS, hence compact, and $\{ \hat{A} \cap L : A \in F \}$
is a collection of closed subsets of L with the finite intersection property (by Lemma 2.3, because $F \subseteq \Sigma$). Thus

$$\hat{F} \cap L = \left(\bigcap \{ \hat{A} : A \in F \} \right) \cap L = \bigcap \{ \hat{A} \cap L : A \in F \} \neq \emptyset$$

by compactness. As L was arbitrary, \hat{F} meets every minimal left ideal. \square

In light of this lemma, one might hope that the Σ-maximal filters correspond precisely to closed transversals for the set of minimal left ideals, in the same way that Θ-maximal filters correspond to the minimal left ideals themselves. We show in Section 4 below that this is at least consistently not the case. However, the transversals that we found in Theorem 2.1 do all correspond to Σ-maximal filters:

Lemma 2.6. Let R be a minimal right ideal of βS, let $p \in R$, and let $G = \bigcap (p \cdot E(R))$. Then G is a Σ-maximal filter on S.

Proof. By Theorem 2.1 $\hat{G} = (p \cdot E(R))$ meets every minimal left ideal, so by Lemma 2.5, $G \subseteq \Sigma$. Now suppose we have a filter $H \subseteq \Sigma$ such that $G \subseteq H$ and pick $A \in H \setminus G$. Since $A \notin G$, pick $f \in E(R)$ such that $A \notin p \cdot f$. Let $L = \beta S \cdot f$. By Lemma 2.5, $H \cap L \neq \emptyset$ so pick $q \in H \cap L$. Since $H \subseteq \hat{G}$, $q = f \notin p \cdot E(R)$.

Since $A \notin p \cdot f$, $q \neq p \cdot f$, contradicting Theorem 2.1(1). \square

Theorem 2.7. Let p be a minimal ultrafilter on S. Then there exist a Θ-maximal filter F and a Σ-maximal filter G such that p is the ultrafilter generated by $F \cup G$. Specifically, if L and R are respectively the minimal left and right ideals of βS containing p, then $F = \bigcap L$ and $G = \bigcap (p \cdot E(R))$ are two such filters.

Moreover, F is the only Θ-maximal filter contained in p, and

$$F = \left\{ A \in p : s^{-1}A \in p \text{ for all } s \in S \right\}.$$

Proof. Let p be a minimal ultrafilter on S. Let L and R denote respectively the minimal left and right ideals of βS containing p. Let $F = \bigcap L$ and let $G = \bigcap (p \cdot E(R))$.

F is Θ-maximal by Lemma 2.4 and G is Σ-maximal by Lemma 2.6. Since any thick set meets any syndetic set, $F \cup G$ generates a filter U. Then $\emptyset \neq U \subseteq F \cap G = L \cap p \cdot E(R) = \{p\}$ by Theorem 2.1. Hence $U = \{p\}$, and this means $U = p$.

To prove the “moreover” assertion of the theorem, suppose F' is any Θ-maximal filter contained in p. Then $p \in \hat{F}'$, and \hat{F}' is a minimal left ideal by Lemma 2.4. This implies $\hat{F}' = L$, because the minimal left ideals of βS are disjoint. $\hat{F}' = L = \hat{F}$ implies $F' = F$, so F is the only Θ-maximal filter contained in p.

It remains to show $F = \left\{ A \in p : s^{-1}A \in p \text{ for all } s \in S \right\}$. Let $H = \left\{ A \subseteq S : s^{-1}A \in p \text{ for all } s \in S \right\}$. By [7, Theorem 6.18], $\hat{H} = \beta S \cdot p = L$. Since $p \in L$, $H = \left\{ A \in p : s^{-1}A \in p \text{ for all } s \in S \right\}$. Since $\hat{H} = L = \hat{F}$, $\hat{H} = F$. \square
While a minimal ultrafilter contains exactly one Θ-maximal filter by the previous theorem, we see now that it may contain more than one Σ-maximal filter.

Theorem 2.8. There is a minimal ultrafilter on \mathbb{N} that contains more than one Σ-maximal filter.

Proof. Let E be the set of even numbers, let O be the set of odd numbers, let $A = \bigcup_{n=0}^{\infty} \{2^{2n}, 2^{2n}+1, 2^{2n}+2, \ldots, 2^{2n+1}-1\}$, and let $B = (E \cap A) \cup (O \setminus A)$. Then B has no gaps longer than 2, so B is syndetic. By a routine application of Zorn’s Lemma, there is a Σ-maximal filter \mathcal{H} such that $B \in \mathcal{H}$. Let L be a minimal left ideal. Then $\mathcal{H} \cap L \neq \emptyset$ by Lemma 2.5; thus there is a minimal ultrafilter $p \in \mathcal{H} \cap L$.

Let R be the minimal right ideal with $p \in R$ and let $\mathcal{G} = \bigcap (p + E(R))$. By Theorem 2.7, \mathcal{G} is Σ-maximal and $\mathcal{G} \subseteq p$. We claim that $\mathcal{G} \neq \mathcal{H}$. To see this, note that $E(R) \subseteq E^*$ so if $p \in E^*$, then $p + E(R) \subseteq E^*$ so $E \in \mathcal{G}$. If $p \in O^*$, then $p + E(R) \subseteq O^*$ so $O \in \mathcal{G}$. But $B \in \mathcal{H}$ and neither $B \cap E$ nor $B \cap O$ is syndetic, so neither E nor O is a member of \mathcal{H}.

To end this section, we will demonstrate a technique for building Σ-maximal filters on \mathbb{N} that offers some control over the filter obtained (more control, anyway, than is given by Zorn’s Lemma). This accomplishes three things. One is to demonstrate that there are many closed transversals for the set of minimal left ideals other than the ones of the form $p \cdot E(R)$. Another is to lay the foundation for Section 4, which uses a few of the following lemmas. The third is an improvement on Theorem 2.8: we will show that every minimal ultrafilter on \mathbb{N} contains more than one Σ-maximal filter.

Lemma 2.9. Let $n \in \mathbb{N}$ and assume $(X_i)_{i=1}^n$ is a sequence of pairwise disjoint subsets of S such that $(\forall G \in \mathcal{P}_f(S)) (\exists H \in \mathcal{P}_f(S)) (\forall x \in S) (\exists y \in S) (\exists i \in \{1, 2, \ldots, n\}) (Gy \subseteq (Hx \cap X_i))$. Then for each minimal left ideal L of βS, there is some $i \in \{1, 2, \ldots, n\}$ such that $L \subseteq X_i$.

Proof. Let L be a minimal left ideal of βS. Aiming for a contradiction, suppose that for each $i \in \{1, 2, \ldots, n\}$, $L \setminus X_i \neq \emptyset$. Let $\mathcal{F} = \bigcap L$. By Lemma 2.4, \mathcal{F} is Θ-maximal. We claim that for each i, there exists $B_i \in \mathcal{F}$ such that $B_i \cap X_i$ is not thick. If $L \cap X_i = \emptyset$, one may ket $B_i = S \setminus X_i$. If $L \cap X_i \neq \emptyset$, then $G_i = \bigcap (L \cap X_i) = \{C \subseteq S : (\exists B \in \mathcal{F})(B \cap X_i \subseteq C)\}$ is a filter properly containing \mathcal{F}. (The containment is proper because $L \setminus X_i \neq \emptyset$.) Hence one may pick $B_i \in \mathcal{F}$ such that $B_i \cap X_i$ is not thick.

For each $j \in \{1, 2, \ldots, n\}$, let $D_j = (\bigcap_{i=1}^n B_i) \cap X_j$. Then for $j \in \{1, 2, \ldots, n\}$, D_j is not thick so pick $G_j \in \mathcal{P}_f(S)$ such that for all $y \in S$, $G_j y \not\subseteq D_j$. Let $G = \bigcup_{j=1}^n G_j$ and pick $H \in \mathcal{P}_f(S)$ as guaranteed by the hypothesis. Now $\bigcap_{i=1}^n B_i \in \mathcal{F}$, so in particular $\bigcap_{i=1}^n B_i$ is thick. Pick $x \in S$ such that $Hx \subseteq \bigcap_{i=1}^n B_i$. Pick $y \in S$ and $j \in \{1, 2, \ldots, n\}$ such that $Gy \subseteq (Hx \cap X_j)$. Then $G_j y \subseteq D_j$, a contradiction. □
We show first that if \(\beta S \) is a minimal left ideal of \(\{ \beta x : x \in \mathbb{N} \} \), so that every minimal left ideal is contained in one cell of the partition.

Theorem 2.10. Let \(n \in \mathbb{N} \) and let \(\{ Z_j \}_{j=1}^n \) be a partition of \(\mathbb{N} \). Let \(\{ I_t \}_{t=1}^\infty \) be a partition of \(\mathbb{N} \) into intervals such that \(\lim_{t \to \infty} |I_t| = \infty \). For \(j \in \{ 1, 2, \ldots, n \} \), let \(X_j = \bigcup_{t \in Z_j} I_t \). Then for each for each minimal left ideal \(L \) of \(\beta \mathbb{N} \), there exists \(j \in \{ 1, 2, \ldots, n \} \) such that \(L \subseteq X_j \). If \(Z_j \) is infinite, then \(X_j \) contains a minimal left ideal of \(\beta \mathbb{N} \).

Proof. We may presume that for each \(t \in \mathbb{N} \), \(\max I_t + 1 = \min I_{t+1} \). If \(Z_j \) is infinite, then \(X_j \) is thick, so the second conclusion is immediate. To establish the first conclusion we invoke Lemma 2.9. That is, we show that

\[
\left(\forall G \in \mathcal{P}_f(\mathbb{N}) \right) \left(\exists H \in \mathcal{P}_f(\mathbb{N}) \right) \left(\exists x \in \mathbb{N} \right) \left(\exists y \in \mathbb{N} \right) \left(\forall i \in \{ 1, 2, \ldots, n \} \right) \left(G + y \subseteq (H + x) \cap X_i \right).
\]

So let \(G \in \mathcal{P}_f(\mathbb{N}) \) and let \(k = \max G \). Pick \(M \in \mathbb{N} \) such that for all \(n \geq M \), the length of \(I_n \) is at least \(k \) and let \(m = \max I_M \). Let \(H = \{ 1, 2, \ldots, m+k \} \) and let \(x \in \mathbb{N} \). Pick the largest \(n \) such that \(z = \max I_n \leq x+m \) and note that \(n \geq M \) so that the length of \(I_n \) and the length of \(I_{n+1} \) are both at least \(k \) and thus \(\{ z-k+1, z-k+2, \ldots, z \} \subseteq I_n \) and \(\{ z+1, z+2, \ldots, z+k \} \subseteq I_{n+1} \). If \(z-k \geq x \), let \(y = z-k \) so that \(G+y \subseteq \{ y+1, y+2, \ldots, y+k \} \subseteq \{ x+1, x+2, \ldots, x+m+k \} \cap I_n = H+x \cap I_n \). If \(z-k < x \), let \(y = z \) so that \(G+y \subseteq \{ y+1, y+2, \ldots, y+k \} \subseteq \{ x+1, x+2, \ldots, x+m+k \} \cap I_{n+1} = H+x \cap I_{n+1} \). \(\square \)

We remark that if \(S \) is the free semigroup on a finite alphabet (where the operation \(\cdot \) is concatenation), if \(n \in \mathbb{N} \), \(X_j \) as in Theorem 2.10 for \(j \in \{ 1, 2, \ldots, n \} \), and \(Y_j = \{ w \in S : \text{the length of } w \text{ is in } X_j \} \), then each minimal left ideal of \(\beta S \) is contained in \(\mathcal{F}_j \) for some \(j \in \{ 1, 2, \ldots, n \} \). We leave the details to the reader.

Theorem 2.11. Let \(\mathcal{R} \) be a finite set of minimal right ideals of \(\beta \mathbb{N} \). There is a \(\Sigma \)-maximal filter \(\mathcal{G} \) on \(\mathbb{N} \) such that \(\mathcal{G} \) is a closed transversal for the minimal left ideals of \(\beta \mathbb{N} \), \(K(\beta \mathbb{N}) \cap \mathcal{G} \subseteq \bigcup \mathcal{R} \), and \(\mathcal{G} \cap R \neq \emptyset \) for every \(R \in \mathcal{R} \). Furthermore, if \(p \) is any minimal ultrafilter contained in one of the members of \(\mathcal{R} \), than we may find such a filter \(\mathcal{G} \) with \(p \in \mathcal{G} \).

Proof. Enumerate \(\mathcal{R} \) as \(\langle R_i \rangle_{i=1}^n \), and fix \(p \in R_1 \). Let \(\langle X_j \rangle_{j=1}^n \) be as in Theorem 2.10, assuming that each \(Z_j \) is infinite. Without loss of generality (by relabelling the \(Z_j \) if necessary) we may assume that \(p \in X_1 \). Let

\[
\mathcal{G} = \bigcap \left(\left((p + E(R_1)) \cap X_1 \right) \cup \bigcup_{i=2}^n (E(R_i) \cap X_i) \right).
\]

We show first that if \(L \) is a minimal left ideal of \(\beta \mathbb{N} \), \(i \in \{ 1, 2, \ldots, n \} \), and \(L \subseteq X_i \), then either

- \(i = 1 \) and \(\mathcal{G} \cap L = \{ p + f \} \), where \(f \) is the identity of \(L \cap R_1 \), or
- \(i > 1 \) and \(\mathcal{G} \cap L = \{ f \} \), where \(f \) is the identity of \(L \cap R_i \).
This will establish that \(\hat{G} \) is a transversal for the minimal left ideals of \(\beta\mathbb{N} \) and that \(p \in \hat{G} \). It will also establish that \(\hat{G} \cap R_i \neq \emptyset \) for each \(i \in \{1, 2, \ldots, n\} \), because each \(X_i \) is thick, which implies that for each \(i \) there is some minimal left ideal \(L \) with \(L \subseteq X_i \).

Observe that

\[
\hat{G} = \left((p + E(R_1)) \cap X_1 \right) \cup \bigcup_{i=2}^{n} (E(R_i) \cap X_i) \\
= (p + E(R_1)) \cap X_1 \cup \bigcup_{i=2}^{n} E(R_i) \cap X_i \\
= (p + E(R_1)) \cap X_1 \cup \bigcup_{i=2}^{n} (E(R_i) \cap X_i). \tag{*}
\]

(The third line follows from the second because the \(X_i \) are not only closed, but clopen.)

For the first bullet point, suppose \(i = 1 \), let \(L \subseteq X_1 \) be a minimal left ideal, and let \(f \) be the identity of \(L \cap R_1 \). By Theorem 2.1, \(L \cap (p + E(R_1)) = \{p + f\} \). Since \(L \subseteq X_1 \), and since \(X_j \cap X_1 = \emptyset \) for \(j \neq 1 \), \((*)\) implies that \(\hat{G} \cap L = p + E(R_1) \cap L = \{p + f\} \).

For the second bullet point, suppose \(i \neq 1 \), let \(L \subseteq X_i \) be a minimal left ideal, and let \(f \) be the identity of \(L \cap R_i \). By Theorem 2.1, \(L \cap E(R_i) = \{f\} \). Since \(L \subseteq X_i \), and since \(X_j \cap X_i = \emptyset \) for \(j \neq i \), \((*)\) implies that \(\hat{G} \cap L = E(R_i) \cap L = \{f\} \).

\(\hat{G} \) meets every minimal left ideal, so \(G \subseteq \Sigma \) by Lemma 2.5. To finish the proof, we must show that \(\hat{G} \) is \(\Sigma \)-maximal. Aiming for a contradiction, suppose that \(\mathcal{H} \) is a filter contained in \(\Sigma \) which properly contains \(G \) and pick \(A \in \mathcal{H} \setminus \hat{G} \). Since \(A \notin \hat{G} \), pick

\[
f \in ((p + E(R_1)) \cap X_1) \cup \bigcup_{i=2}^{n} (E(R_i) \cap X_i)
\]
such that \(A \notin f \). Either

- \(f \in (p + E(R_1)) \cap X_1 \), or
- \(f \in E(R_j) \cap X_j \) for some \(j \neq 1 \).

In either case, let \(L = \beta\mathbb{N} + f \). By Lemma 2.5, \(L \cap \hat{H} \neq \emptyset \) so pick \(q \in L \cap \hat{H} \). Since \(A \in q \) we have \(q \neq f \). But \(q \in L \cap \hat{H} \subseteq L \cap \hat{G} = \{f\} \), a contradiction. \(\square \)

Corollary 2.12. Every minimal ultrafilter on \(\mathbb{N} \) contains more than one \(\Sigma \)-maximal filter.

Proof. Let \(p \) be a minimal ultrafilter, let \(R \) be the minimal right ideal containing \(p \), and let \(R' \) be any other minimal right ideal. By Theorem 2.7, \(G = \bigcap (p + E(R)) \) is a \(\Sigma \)-maximal filter contained in \(p \). By the previous theorem, there is a \(\Sigma \)-maximal filter \(\mathcal{H} \) contained in \(p \) such that \(\hat{H} \cap R' \neq \emptyset \). Theorem 2.1 implies that \(\hat{G} \cap K(\beta\mathbb{N}) \subseteq p + E(R) \subseteq R \), so that \(\hat{G} \cap R' = \emptyset \). Thus \(G \neq \mathcal{H} \). \(\square \)
3. Topology in $K(\beta S)$

A set $F \subseteq S$ is a left solution set (respectively a right solution set) if and only if there exist $a, b \in S$ such that $F = \{x \in S : ax = b\}$ (respectively $F = \{x \in S : xa = b\}$). If every left solution set and every right solution set is finite, then S is called weakly cancellative. If $|S| = \kappa$ and the union of fewer than κ solution sets (left or right) always has cardinality less than κ, then S is called very weakly cancellative. Of course, if $\kappa = \omega$, then “weakly cancellative” and “very weakly cancellative” mean the same thing. We let $U(S)$ denote the set of uniform ultrafilters on S. By [7, Lemma 6.34.3], if S is very weakly cancellative, then $U(S)$ is an ideal of βS.

The easy results of the following lemma do not appear to have been written down before.

Lemma 3.1. Assume that S is very weakly cancellative. Then $K(\beta S) = K(U(S))$, the minimal left ideals of βS and $U(S)$ are the same, and the minimal right ideals of βS and $U(S)$ are the same. If L is a minimal left ideal of βS and $p \in L$, then $L = \beta S \cdot p = S^* \cdot p = U(S) \cdot p$.

Proof. Since $U(S)$ is an ideal of βS, $K(U(S)) \subseteq U(S)$ and thus by [7, Theorem 1.65], $K(U(S)) = K(\beta S)$.

Let T be a minimal left ideal of $U(S)$. Since $U(S)$ is a left ideal of βS, by [7, Lemma 1.43(c)], T is a minimal left ideal of βS. Now let L be a minimal left ideal of βS. Since $U(S)$ is a right ideal of βS, $L \cap U(S) \neq \emptyset$. Since $U(S)$ is a left ideal of βS, $L \cap U(S)$ is a left ideal of βS contained in L, so $L \cap U(S) = L$. That is, $L \subseteq U(S)$. Thus L is a left ideal of $U(S)$ so pick a minimal left ideal T of $U(S)$ such that $T \subseteq L$. As we just saw, T is a left ideal of βS so $T = L$.

The arguments in the paragraph above were completely algebraic, so by a left-right switch, we have that the minimal right ideals of βS and $U(S)$ are the same.

Finally, let L be a minimal left ideal of βS and let $p \in L$. Then $\beta S \cdot p$ is a left ideal of βS contained in L, so $L = \beta S \cdot p$. Also, $U(S) \cdot p$ is a left ideal of $U(S)$ contained in L, so $L = U(S) \cdot p$. Thus $L = U(S) \cdot p \subseteq S^* \cdot p \subseteq \beta S \cdot p = L$.

Note the similarity of this lemma with [7, Theorems 4.36 and 4.37], which state that S is weakly cancellative if and only if S^* is an ideal of βS, in which case $K(S^*) = K(\beta S)$, and a set is a minimal left ideal (respectively, minimal right ideal) for S^* if and only if it is a minimal left ideal (respectively, minimal right ideal) for βS.

Note that very weak cancellativity does not imply S^* is an ideal of βS (because this is equivalent to weak cancellativity); in general, it may not even be a sub-semigroup of βS. However, as an immediate corollary to Lemma 3.1, if S is very weakly cancellative then $K(\beta S) \subseteq S^*$.

All the results of this section (except Lemmas 3.2 and 3.3) assume that S is very weakly cancellative. Under the additional assumption that there
is a uniform, finite bound on $|\{x \in S : xa = a\}|$ for $a \in S$, we establish that if p is a minimal ultrafilter on S, then

- p is a butterfly point of S^* and, furthermore,
- $S^* \setminus \{p\}$ is not normal.

Under the additional assumption that S is countable, we also show that if R is the minimal right ideal containing p, then

- $p \cdot E(R)$ is a P-space, and
- $p \cdot E(R)$ is not Borel in βS.

Note in particular that these results apply to the semigroups $(\mathbb{N}, +)$ and (\mathbb{N}, \cdot), which are easily seen to satisfy all of the above assumptions. The proofs proceed by extracting the topological content of Theorem 2.7, which provides a canonical (and useful) basis for the space $p \cdot E(R)$.

Lemma 3.2. Let R be a minimal right ideal of βS and let $p \in R$. If $q \in p \cdot E(R)$, then $q \cdot E(R) = p \cdot E(R)$.

Proof. Assume that $q \in p \cdot E(R)$ and pick $e \in E(R)$ such that $q = p \cdot e$. Given any $f \in E(R)$, $q \cdot f = p \cdot e \cdot f = p \cdot f$ so $q \cdot E(R) \subseteq p \cdot E(R)$. Now let L be the minimal left ideal with $p \in L$ and let f be the identity of $L \cap R$. Then $q \cdot f = p \cdot f = p$ so $p \in q \cdot E(R)$ so, as above, $p \cdot E(R) \subseteq q \cdot E(R)$. \square

For $a \in S$, let $\text{Fix}(a) = \{x \in S : xa = a\}$. Several results in this section use the hypothesis that there is a uniform, finite bound on the size of the sets $\text{Fix}(a)$. The left-right switch of [6, Theorem 4.11] shows that this assumption is strictly weaker than the assertion that there is a finite bound on the size of right solution sets.

Lemma 3.3. Let $k \in \mathbb{N}$ and assume that for each $a \in S$, $|\text{Fix}(a)| \leq k$. Then for each $p \in S^*$, $|\{x \in S : x \cdot p = p\}| \leq k$.

Proof. Let $p \in S^*$ and suppose we have distinct $x_1, x_2, \ldots, x_{k+1}$ in S such that $x_i p = p$ for each i. For $i \in \{1, 2, \ldots, k + 1\}$, let $D_i = \{a \in S : x_ia = a\}$. Since each λ_{x_i} is continuous, we have by [7, Theorem 3.35] that each $D_i \in p$. Pick $a \in \bigcap_{i=1}^{k+1} D_i$. Then $\{x_1, x_2, \ldots, x_{k+1}\} \subseteq \text{Fix}(a)$, a contradiction. \square

Let us note that the conclusion of this lemma is not a consequence of very weak cancellativity, or even of weak cacellativity. The semigroup (\mathbb{N}, \lor), where $a \lor b = \max\{a, b\}$, is weakly cancellative, but $n \lor p = p$ for every $p \in \mathbb{N}^*$ and $n \in \mathbb{N}$.

Theorem 3.4. Suppose S is very weakly cancellative. Let p be a minimal ultrafilter on S, and let L and R denote the minimal left and right ideals of βS containing p. Then

$$\{A^* \cap B^* : L \subseteq A^* \text{ and } p \cdot E(R) \subseteq B^*\}$$

is a local basis for p in S^*.
To establish (1), assume that βS. Suppose Corollary 3.5. Suppose that points in the topology they inherit from Lemma 3.8. Suppose x. Let $A = H$. For $\mu < \sigma < \kappa$, we inductively choose $\langle x_\sigma \rangle_{\sigma < \kappa}$ such that for $\sigma < \kappa$, $F_{\delta(\sigma)} \cdot x_\sigma \subseteq A$ and for $\mu < \sigma < \kappa$, $F_{\bar{\delta}(\sigma)} \cdot x_\sigma \subseteq A$ and $F_{\delta(\mu)} \cdot x_\mu = \emptyset$. Having chosen $\langle x_\mu \rangle_{\mu < \sigma}$, let $H = \bigcup_{\mu < \sigma} F_{\bar{\delta}(\mu)} \cdot x_\mu$. Then $|H| < \kappa$ so by Lemma 3.6, $A \setminus H$ is thick, so we may pick x_σ with $F_{\delta(\sigma)} \cdot x_\sigma \subseteq A \setminus H$. Having chosen $\langle x_\sigma \rangle_{\sigma < \kappa}$, for each $\eta < \kappa$, let $A_\eta = \bigcup \{ F_{\delta(\sigma)} \cdot x_\sigma : \tau(\sigma) = \eta \}$. Then $\langle A_\eta \rangle_{\eta < \kappa}$ is a sequence of κ pairwise disjoint thick subsets of A.

Lemma 3.8. Suppose S is very weakly cancellative and there is a uniform, finite bound on $|\text{Fix}(a)|$ for $a \in S$. Let L and R be minimal left and right ideals of βS, and let $p \in R$. Then neither L nor $p \cdot E(R)$ has any isolated points in the topology they inherit from S^*.

Proof. Suppose that q is an isolated point of L. Pick $A \in p$ such that $A^* \cap L \subseteq \{p\}$. Now L is a minimal left ideal of βS and $q \in L = S^* \cdot q$ by
Lemma 3.1, so pick \(r \in S^* \) such that \(q = r \cdot q \). Then \(\{ x \in S : x^{-1}A \in q \} \in r \). Let \(F = \{ x \in S : x \cdot q = \} \). Then \(F \) is finite by Lemma 3.3, so pick \(x \in S \setminus F \) such that \(x^{-1}A \in q \). Then \(A \in x \cdot q \) so \(x \cdot q \in A^* \cap L \) and \(x \cdot q \neq q \), a contradiction.

Suppose \(q \in p \cdot E(R) \), and let \(U \) be a neighborhood of \(q \) in \(p \cdot E(R) \). By Corollary 3.5, there is some thick set \(A \) such that \(A^* \cap (p \cdot E(R)) \subseteq U \). By combining Lemma 3.7 with Lemma 2.3, \(A^* \) contains more than one minimal left ideal. Each minimal left ideal contains a point of \(p \cdot E(R) \) by Theorem 2.1, so this shows that \(A^* \), hence \(U \), contains more than one point of \(p \cdot E(R) \).

Let us note that weak cancellativity alone is not enough to prove this lemma. The semigroup \((\mathbb{N}, \vee) \) is weakly cancellative, but \(q \vee p = p \) for every \(p, q \in \mathbb{N}^* \). This means that \(\{ p \} \) is a minimal left ideal for every \(p \in \mathbb{N}^* \).

Theorem 3.9. Suppose \(S \) is very weakly cancellative and has a uniform, finite bound on \(|\text{Fix}(a)| \) for \(a \in S \). Then every minimal ultrafilter on \(S \) is a butterfly point of \(S^* \).

Proof. Let \(L \) and \(R \) be the minimal left and right ideals containing \(p \). Theorem 2.1 asserts that \(\{ p \} = L \cap \overline{p \cdot E(R)} \). Neither \(L \) nor \(\overline{p \cdot E(R)} \) has any isolated points by Lemma 3.8, so this makes \(p \) a butterfly point. \(\square \)

We have included the proof of Theorem 3.9 because of its naturalness and simplicity. But we prove next a stronger result that supersedes Theorem 3.9 by showing, under the same assumptions, that every minimal ultrafilter is a non-normality point of \(S^* \).

Lemma 3.10. Let \(S \) be a very weakly cancellative semigroup with \(|S| = \kappa \), and let \(\mathcal{U} \) be a collection of open subsets of \(S^* \) with \(|\mathcal{U}| \leq \kappa \). If \(\bigcap \mathcal{U} \) contains a minimal left ideal of \(\beta S \), then \(\bigcap \mathcal{U} \) contains \(2^{2^\kappa} \) distinct minimal left ideals of \(\beta S \).

Proof. Let \(L \) be a minimal left ideal of \(\beta S \) with \(L \subseteq \bigcap \mathcal{U} \). We claim that for each \(U \in \mathcal{U} \), there exists \(B_U \subseteq S \) such that \(L \subseteq B_U^* \subseteq U \). Let \(U \in \mathcal{U} \). For each \(p \in L \) pick \(C_p \in p \) such that \(C_p^* \subseteq U \). Using the compactness of \(L \), pick a finite \(F \subseteq L \) such that \(L \subseteq \bigcup_{p \in F} C_p^* \), and let \(B_U = \bigcup_{p \in F} C_p \). Then \(B_U^* = \bigcup_{p \in F} C_p^* \subseteq U \), as claimed. Let

\[
B = \{ \bigcap F : F \in \mathcal{P}_f(\{ B_U : U \in \mathcal{U} \}) \}.
\]

Observe that \(B \) is a set of at most \(\kappa \) subsets of \(S \), \(L \subseteq \bigcap_{B \in B} B^* \subseteq \bigcap \mathcal{U} \), and \(B \) is closed under finite intersections.

Enumerate \(S \) as \(\langle s_\sigma : \sigma < \kappa \rangle \) and enumerate \(B \times \mathcal{P}_f(S) \) as \(\langle D_\sigma : \sigma < \kappa \rangle \). For \(\sigma < \kappa \), let \(E_\sigma = \bigcap_{s \in F} s^{-1}B \), where \((B, F) = D_\sigma \).

We claim that \(|E_\sigma| = \kappa \) for each \(\sigma < \kappa \). To see this, let \(p \in L \), let \(\sigma < \kappa \), and let \((B, F) = D_\sigma \). For each \(s \in F \), \(s \cdot p \in L \subseteq \overline{B} \), which implies that \(s^{-1}B \in p \), which implies that \(E_\sigma \in p \). From this and [HS, Lemma 6.34.3], it follows that \(|E_\sigma| = \kappa \).
We now construct a sequence of elements of \(S \) by transfinite recursion. To begin, pick \(t_0 \in E_0 \). Given \(0 < \mu < \kappa \), assume we have chosen \(\{ t_\sigma : \sigma < \mu \} \) already such that

1. if \(\sigma < \mu \), then \(t_\sigma \in E_\sigma \),
2. if \(\sigma < \delta < \mu \), then \(t_\sigma \neq t_\delta \), and
3. if \(\sigma < \mu, \eta < \sigma, \nu < \sigma, \) and \(\tau < \sigma \), then \(s_\eta \cdot t_\nu \neq s_\tau \cdot t_\sigma \).

Given \(\eta < \mu, \nu < \mu, \) and \(\tau < \mu \), let \(A_{\eta,\nu,\tau} = \{ t \in S : s_\eta \cdot t_\nu = s_\tau \cdot t \} \). Then each \(A_{\eta,\nu,\tau} \) is a left solution set, so \(\bigcup_{\eta < \mu} \bigcup_{\nu < \mu} \bigcup_{\tau < \mu} A_{\eta,\nu,\tau} \) is of size \(\kappa \). The three hypotheses are again satisfied at the next stage of the recursion, and this completes the construction of our sequence \(\{ t_\sigma : \sigma < \kappa \} \).

Claim. If \(p \) and \(q \) are distinct uniform ultrafilters on \(T = \{ t_\sigma : \sigma < \kappa \} \), then \(\beta S \cdot p \cap \beta S \cdot q = \emptyset \).

Proof of claim. Assume \(P \) and \(Q \) are disjoint subsets of \(T \), with \(P \in p \) and \(Q \in q \). Then we claim that

\[
\beta S \cdot p \subseteq \{ s_\eta \cdot t_\sigma : t_\sigma \in P \text{ and } \eta < \sigma \}.
\]

To see this, it suffices to show that \(S \cdot p \subseteq \{ s_\eta \cdot t_\sigma : t_\sigma \in P \text{ and } \eta < \sigma \} \). Let \(s_\nu \in S \). As \(p \) is uniform, \(\{ t_\sigma : t_\sigma \in P \text{ and } \nu < \sigma \} \in p \), so that \(s_\nu \cdot \{ t_\sigma : t_\sigma \in P \text{ and } \nu < \sigma \} \in s_\nu \cdot p \) and \(s_\nu \cdot \{ t_\sigma : t_\sigma \in P \text{ and } \nu < \sigma \} \subseteq \{ s_\eta \cdot t_\sigma : t_\sigma \in P \text{ and } \eta < \sigma \} \). Similarly,

\[
\beta S \cdot q \subseteq \{ s_\nu \cdot t_\delta : t_\delta \in Q \text{ and } \nu < \delta \}.
\]

Because \(\{ s_\eta \cdot t_\sigma : t_\sigma \in P \text{ and } \eta < \sigma \} \cap \{ s_\nu \cdot t_\delta : t_\delta \in Q \text{ and } \nu < \delta \} = \emptyset \) by construction, we have that \(\beta S \cdot p \cap \beta S \cdot q = \emptyset \), as desired. \(\square \)

Consider the relation on \(\{ D_\sigma : \sigma < \kappa \} \) defined by

\[D_\sigma \prec D_\tau \text{ if and only if } \pi_1(D_\tau) \subseteq \pi_1(D_\sigma) \text{ and } \pi_2(D_\sigma) \subseteq \pi_2(D_\tau) \]

where, as usual, \(\pi_1(B, F) = B \) and \(\pi_2(B, F) = F \). Observe that, by our choice of \(B \) and the definition of the \(D_\sigma \), any finitely many members of \(\{ D_\sigma : \sigma < \kappa \} \) have a common upper bound with respect to \(\prec \). In other words, \(\{ D_\sigma : \sigma < \kappa \} \) is directed by \(\prec \).

For each \(\sigma < \kappa \), let \(T_\sigma = \{ t_\tau : D_\sigma \prec D_\tau \} \). We claim that \(\{ T_\sigma : \sigma < \kappa \} \) has the \(\kappa \)-uniform finite intersection property. (This means that the intersection of finitely many of the \(T_\sigma \) has size \(\kappa \).) To see this, first observe that each \(T_\sigma \) has size \(\kappa \), because if \(T_\sigma = (B, F) \) then for any \(s \in S \setminus F \), \(D_\sigma \prec (B, F \cup \{ s \}) \). Then, if \(H \in \mathcal{P}_f(\kappa) \), pick \(\tau \) such that \(D_\sigma \prec D_\tau \) for each \(\sigma \in H \), and observe that \(|\bigcap_{\sigma \in H} T_\sigma| \geq |T_\tau| = \kappa \).

By [HS, Theorem 3.62], there are \(2^{2\kappa} \) distinct uniform ultrafilters on \(S \) containing \(\{ T_\sigma : \sigma < \kappa \} \). For each such ultrafilter \(p \), let \(L_p \) denote a minimal left ideal contained in \(\beta S \cdot p \). (One must exist, because \(\beta S \cdot p \) is a left ideal.) If \(p \neq q \), then \(L_p \neq L_q \), because \(\beta S \cdot p \) and \(\beta S \cdot q \) are disjoint by the claim.
Let $|p|$ and assume there is a uniform, finite bound on p every minimal ultrafilter p completing the proof of the lemma.

Let p be a uniform ultrafilter on S containing $\{T_\sigma : \sigma < \kappa\}$. If $B \in \mathcal{B}$ and $s \in S$, then pick $\sigma < \kappa$ such that $D_\sigma = (B, \{s\})$, and observe that $T_\sigma \in p$. If $\tau < \kappa$ and $D_\sigma < D_\tau = (C, F)$, then $t_\tau \in E_\tau = \bigcap_{r \in F} r^{-1} C \subseteq s^{-1} B$, so that $s \cdot p \in \overline{B}$. Because s and B were arbitrary, this shows that $S \cdot p \subseteq \overline{B}$ for all $B \in \mathcal{B}$. By the continuity of ρ_p, this implies $\beta S \cdot p \subseteq \overline{B}$ for all $B \in \mathcal{B}$. Thus

$$L_p \subseteq \beta S \cdot p \subseteq \bigcap \{ \overline{B} : B \in \mathcal{B} \} \subseteq \bigcap U,$$

completing the proof of the theorem.

\[\square\]

Theorem 3.11. Let S be a very weakly cancellative semigroup with $|S| = \kappa$, and assume there is a uniform, finite bound on $|\text{Fix}(a)|$ for $a \in S$. Then for every minimal ultrafilter p on S, $S^* \setminus \{p\}$ is not normal.

Proof. Let L and R be the minimal left and right ideals respectively with $p \in L \cap R$. Let e be the identity of $L \cap R$. Let $C = p \cdot E(R)$. We claim that $L \setminus \{p\}$ and $C \setminus \{p\}$ cannot be separated by open sets in $S^* \setminus \{p\}$. Suppose instead that we have open subsets U and V of S^* such that $L \setminus \{p\} \subseteq U$, $C \setminus \{p\} \subseteq V$, and $U \cap V \subseteq \{p\}$. Let $D = \{s \in S : s \cdot p \neq p\}$ and observe that, by Lemma 3.2, $S \setminus D$ is finite.

For each $s \in D$, let $W_s = S^* \setminus s \cdot C$. Now fix $s \in D$. Because λ_s is continuous, W_s is open in S^*. We claim also that $p \in W_s$. We know that $p \cdot E(R) \cdot e = \{p \cdot e\} = \{p\}$. Because $\rho_e(p \cdot E(R)) = \{p\}$, and ρ_e is continuous on all of βS, we have

$$C \cdot e = \rho_e(p \cdot E(R)) = p \cdot E(R) \subseteq \{p\}.$$

If $p \in s \cdot C$, then $p = p \cdot e \in s \cdot C \cdot e = \{s \cdot p\}$, so $p = s \cdot p$. This contradicts the assumption that $s \in D$, so we may conclude that W_s is a neighborhood of p. Hence $L \subseteq U \cup W_s$. Furthermore, because s was an arbitrary element of D, $L \subseteq \bigcap_{s \in D} (U \cup W_s)$.

By Lemma 3.10, there is a minimal left ideal L' of βS such that $L' \neq L$ and $L' \subseteq \bigcap_{s \in D} (U \cup W_s)$. Let f be the identity of $L' \cap R$. Now $p \in L = S^* \cdot p$ so $p = q \cdot p$ for some $q \in S^*$. Since $q \in S^*$, $D \in q$ and so $p \in D \cdot p$. Therefore $p \cdot f = \rho_f(p) \in \rho_f(D \cdot p) = D \cdot p \cdot f$. We claim $L' \cap \bigcap_{s \in D} W_s \cap (D \cdot p \cdot f) = \emptyset$. Suppose instead that $s \in D$ and $s \cdot p \cdot f \in L' \cap \bigcap_{t \in D} W_t$. Then, in particular, $s \cdot p \cdot f \in W_s$. But $p \cdot f \in C$, so $s \cdot p \cdot f \in s \cdot C = S^* \setminus W_s$, a contradiction.

As $p \cdot f \in D \cdot p \cdot f$ and $L' \cap \bigcap_{s \in D} W_s \cap (D \cdot p \cdot f) = \emptyset$, we have that $L' \cap \bigcap_{s \in D} W_s$ is not a neighborhood of $p \cdot f$ in L'.

Now $p \cdot f \in C \setminus \{p\} \subseteq V$ and V is open in S^*, so $L' \cap (L' \cup V)$ is a neighborhood of $p \cdot f$ in L'. Therefore $L' \cap (L' \cup V)$ cannot be contained in $L' \cap \bigcap_{s \in D} W_s$. Pick $q \in L' \cap (L' \cup V) \setminus (L' \cap \bigcap_{s \in D} W_s)$, and pick $s \in D$ such that $q \notin W_s$. Because $L' \subseteq U \cup \bigcap_{t \in D} W_t$, we must have $q \in U \cap V$ and $q \notin W_s$. But $q \notin W_s$ implies $q \neq p$, so this shows that $U \cap V \subseteq \{p\}$, as desired.

\[\square\]
Corollary 3.12. Let $p \in K(\beta\mathbb{N}, +)$. Then $\mathbb{N}^* \setminus \{p\}$ is not normal.

Proof. $(\mathbb{N}, +)$ is cancellative and for $a \in \mathbb{N}$, $\{x \in \mathbb{N} : x + a = a\} = \emptyset$. \hfill \Box

Corollary 3.13. Let $p \in K(\beta\mathbb{N}, \cdot)$. Then $\mathbb{N}^* \setminus \{p\}$ is not normal.

Proof. (\mathbb{N}, \cdot) is cancellative and for $a \in \mathbb{N}$, $\{x \in \mathbb{N} : xa = a\} = \{1\}$. \hfill \Box

Let $K(\beta\mathbb{N}, +) \cap K(\beta\mathbb{N}, \cdot) = \emptyset$ by [7, Corollary 13.15], so the results of Corollaries 3.12 and 3.13 do not overlap.

We turn now to the last two results of this section, which give two curious topological properties of the spaces of the form $p \cdot E(R)$. These results are proved under the extra assumption that S is countable.

Recall that x is a P-point of a space X if every countable intersection of neighborhoods of x is a neighborhood of x. X is a P-space if all its points are P-points or, equivalently, if countable intersections of open sets are open.

Theorem 3.14. Suppose S is countable, weakly cancellative, and has a uniform, finite bound on $|\text{Fix}(a)|$ for $a \in S$. Let R be a minimal right ideal of S^* and let $r \in R$. Then every $q \in r \cdot E(R)$ is a P-point of $r \cdot E(R)$. In particular, $r \cdot E(R)$ is a P-space.

Proof. Let $q \in r \cdot E(R)$, and let U_1, U_2, U_3, \ldots be open neighborhoods of q in $C = r \cdot E(R)$. Let L denote the minimal left ideal of S^* containing q.

Setting $K_n = C \setminus U_n$ for every $n \in \mathbb{N}$, we have

$$L \cap \bigcup_{n \in \mathbb{N}} K_n \subseteq L \cap C = \{q\}$$

by Theorem 2.1. Let $\{d_n : n \in \mathbb{N}\}$ be a countable dense subset of L that does not contain q. (Such a set exists because L is separable, as $L = S^* \setminus q$, $\{x \in S : x \cdot q = q\}$ is finite by Lemma 3.3, and L has no isolated points by Lemma 3.8). Taking $A = \bigcup_{n \in \mathbb{N}} K_n$ and $B = \{d_n : n \in \mathbb{N}\}$, A and B are σ-compact subsets of $\beta\mathbb{N}$ such that $\overline{A} \cap B = \emptyset$ and $B \cap A = \emptyset$. By Theorem 3.40 in [7], this implies $\overline{A} \cap B = \emptyset$. As $q \in B$, we have $q \notin \overline{A}$. Taking complements, this implies q is in the interior of $\bigcap_{n \in \mathbb{N}} U_n$. This shows q is a P-point of C. \hfill \Box

Corollary 3.15. Suppose S is countable, weakly cancellative, and has a uniform, finite bound on $|\text{Fix}(a)|$ for $a \in S$. Let R be a minimal right ideal of S^*. Then $E(R)$ is not Borel in βS, nor is $q \cdot E(R)$ for any $q \in R$.

Proof. Since $q \cdot E(R) = E(R)$ if $q \in E(R)$, it suffices to establish the second conclusion. By (a very special case of) Lemma 3.10, there are $2^\mathbb{N}$ minimal left ideals in βS and $q \cdot E(R)$ meets each of them, so $|q \cdot E(R)| = 2^\mathbb{N}$. Theorem 3.14
implies that any compact subset of $q \cdot E(R)$ is finite (because every subspace of a P-space is a P-space, but infinite compact spaces are never P-spaces by [5, Exercise 4K1]). Applying Lemma 3.1 from [8], this implies that $q \cdot E(R)$ is not Borel in βS. (Lemma 3.1 of [8] says that any Borel subset of βN is the union of at most c compact sets, but the proof only uses the fact that N is countable.) □

Once again, we note that weak cancellativity alone is not enough to prove Theorem 3.14 or Corollary 3.15. The semigroup (\mathbb{N}, \lor) is weakly cancellative, but it has a single minimal right ideal, namely \mathbb{N}^* itself, and $E(\mathbb{N}^*) = \mathbb{N}^*$. Clearly \mathbb{N}^* is not a P-space, and it is Borel in βN.

4. A negative result

In this final section, we address the natural question of whether, given a Θ-maximal filter \mathcal{F} and a Σ-maximal filter \mathcal{G}, their union $\mathcal{F} \cup \mathcal{G}$ must generate an ultrafilter. We show that it is consistent with ZFC that the answer is negative. More precisely, we will use the hypothesis $p = c$ (a weak form of Martin’s Axiom) to construct a Θ-maximal filter \mathcal{F} on \mathbb{N} and a Σ-maximal filter \mathcal{G} on \mathbb{N} such that $\mathcal{F} \cup \mathcal{G}$ does not generate an ultrafilter.

In light of Lemma 2.4, the assertion that some such \mathcal{F} and \mathcal{G} exist is equivalent to the assertion that there is a minimal left ideal \mathcal{L} and a Σ-maximal filter \mathcal{G} such that $\mathcal{L} \cap \mathcal{G}$ contains more than one point. In other words, it is equivalent to the assertion that not every Σ-maximal filter corresponds to a closed transversal for the minimal left ideals.

The hypothesis $p = c$ is used indirectly in order to invoke a result from [3] to prove Lemma 4.4 below. In order to keep this section relatively self-contained, we also include a (short) derivation of Lemma 4.4 from CH. This latter hypothesis is stronger (i.e., CH implies $p = c$) so that proving the result from $p = c$ is “better” in some sense. But either hypothesis is, of course, adequate to establish consistency with ZFC, and the reader who wishes to do so may ignore any further mention of p and c and read this section as a self-contained proof carried out in ZFC + CH.

Let us say that $A \subseteq \mathbb{N}$ is nicely thick if it is thick and, for every minimal left ideal \mathcal{L}, either $\mathcal{L} \subseteq A^*$ or $\mathcal{L} \cap A^* = \emptyset$.

Lemma 4.1. Suppose $\{I_n : n \in \mathbb{N}\}$ is a partition of \mathbb{N} into intervals such that $\lim_{n \to \infty} |I_n| = \infty$. For every infinite $A \subseteq \mathbb{N}$, the set $\bigcup \{I_n : n \in A\}$ is nicely thick.

Proof. This is an immediate consequence of Theorem 2.10 with $n = 2$, $Z_1 = A$, and $Z_2 = \mathbb{N} \setminus A$. □

Lemma 4.2. For every thick set A, there is a nicely thick $B \subseteq A$. Furthermore, there is some such B with the property that $A^* \setminus B^*$ contains a minimal left ideal.

Proof. Suppose A is thick. By a routine recursion argument, we may pick a sequence I_1, I_2, I_3, \ldots of intervals such that
\[
\{ I_n : n \in \mathbb{N} \} \text{ is a partition of } \mathbb{N}, \\
\lim_{n \to \infty} |I_n| = \infty, \quad \text{and} \\
\bigcup \{ I_n : n \text{ is even} \} \subseteq A.
\]

By the previous lemma, \(B = \bigcup \{ I_n : n \text{ is even} \} \) is a nicely thick subset of \(A \). For the second assertion, take \(B = \bigcup \{ I_n : n \text{ is a multiple of } 4 \} \) instead. Then \(A \setminus B \) contains the (nicely) thick set \(\bigcup \{ I_n : n \text{ is an odd multiple of } 2 \} \), which implies that \(A^* \setminus B^* = (A \setminus B)^* \) contains a minimal left ideal by Lemma 2.3.

Let us say that \(X \subseteq \mathbb{N}^* \) is left-separating if for every minimal left ideal \(L \), either \(L \subseteq X \) or \(L \cap X = \emptyset \). Thus, if \(A \subseteq \mathbb{N} \) then (by definition) \(A^* \) is left-separating if and only if \(A \) is nicely thick.

Lemma 4.3. The collection of all left-separating subsets of \(\mathbb{N}^* \) is closed under arbitrary unions and intersections, and under taking relative complements.

Proof. Let \(X \) be a collection of left-separating subsets of \(\mathbb{N}^* \), and let \(L \) be a minimal left ideal. Either (1) some \(X \in X \) contains \(L \), in which case \(\bigcup X \) contains \(L \), or (2) no \(X \in X \) contains \(L \), in which case \(L \cap \bigcup X = \emptyset \). As \(L \) was arbitrary, \(\bigcup X \) is left-separating. A similar argument shows the collection of left-separating subsets of \(\mathbb{N}^* \) is closed under arbitrary intersections and taking relative complements.

Lemma 4.4. Assume \(p = \text{cf} (\text{CH}) \). If \(\alpha \) is an ordinal with \(\alpha < \text{cf} \) and \(\langle A_\beta : \beta < \alpha \rangle \) is a sequence of thick subsets of \(\mathbb{N}^\text{\text{c}} \), well-ordered in type \(\alpha \), such that \(A^*_\beta \supseteq A^*_\gamma \) whenever \(\beta < \gamma \), then there is a thick set \(A_\alpha \) such that \(A^*_\beta \supseteq A^*_\gamma \) for all \(\beta < \alpha \).

Proof. This follows from [3, Theorem 3.4].

More precisely, in [3] the cardinal number \(t_\varnothing \) is defined to be the least cardinal \(\kappa \) such that the conclusion of the present lemma is true for all \(\alpha < \kappa \). Thus the present lemma can be rephrased as follows: if \(p = \text{cf} \), then \(t_\varnothing = \text{cf} \).

But Theorem 3.4 in [3] asserts that \(t_\varnothing = \kappa \), and it is known that \(p \leq \kappa \).

Hence \(p = \text{cf} \) implies \(t_\varnothing = \text{cf} \), as claimed.

Proof of Lemma 4.4 from CH. If \(\alpha = \delta + 1 \), let \(A_\alpha = A_\delta \). So assume \(\alpha \) is a (nonzero) limit ordinal. We claim that for each \(F \in \mathcal{P}_f(\alpha) \), \(\bigcap_{\delta \in F} A_\delta \) is thick. For such \(F \), let \(\gamma = \text{max} F \). Then \(A^*_\gamma \subseteq \bigcap_{\delta \in F} A^*_\delta = (\bigcap_{\delta \in F} A_\delta)^* \) so \(G = A_\gamma \setminus \bigcap_{\delta \in F} A_\delta \) is finite. Since \(A_\gamma \) is thick, by Lemma 3.6, \(A_\gamma \setminus G \) is thick and \(A^*_\gamma \setminus G \subseteq \bigcap_{\delta \in F} A^*_\delta \).

Now \(\alpha \) is countable, by CH. Thus we may enumerate \(\{ A_\delta : \delta < \alpha \} \) as \(\langle B_n \rangle_{n=1}^{\infty} \). For each \(n \), let \(C_n = \bigcap_{t=1}^{n} B_n \). Then each \(C_n \) is thick. For \(n \in \mathbb{N} \), pick \(x_n \in \mathbb{N} \) such that \(\{ x_n + 1, x_n + 2, \ldots, x_n + n \} \subseteq C_n \) and let \(A_\alpha = \bigcup_{n=1}^{\infty} \{ x_n + 1, x_n + 2, \ldots, x_n + n \} \). Then \(A_\alpha \) is thick. Given \(\delta < \alpha \), pick \(n \in \mathbb{N} \) such that \(A_\delta = B_n \). Then \(A_\alpha \setminus A_\delta \subseteq \bigcup_{t=1}^{n-1} \{ x_t + 1, x_t + 2, \ldots, x_t + t \} \), so \(A^*_\alpha \subseteq A^*_\delta \).
Lemma 4.5. Assuming $p = c$ (or CH), there exist disjoint open subsets U and V of \mathbb{N}^* such that

- U and V are left-separating.
- there is a minimal left ideal L such that
 - L has a neighborhood basis of left-separating clopen sets; i.e., for every open set W containing L, there is a nicely thick $A \subseteq \mathbb{N}$ with $L \subseteq A^* \subseteq W$.
 - $L \subseteq U \cap K(\beta \mathbb{N})$.
 - $L \subseteq V \cap K(\beta \mathbb{N})$.

Proof. We begin the proof with the construction of a basis for a Θ-maximal filter F. Ultimately, U and V will be defined from our basis for F, and \hat{F} will be the minimal left ideal L mentioned in the statement of the lemma.

To construct F, fix an enumeration $\{A_\alpha : \alpha < c\}$ of Θ. Using transfinite recursion, we will construct a well-ordered sequence $\langle X_\alpha : \alpha < c \rangle$ of nicely thick sets such that

- $X_\alpha^* \supseteq X_\beta^*$ whenever $\alpha < \beta$,
- $X_\alpha^* \setminus X_\beta^*$ contains a minimal left ideal whenever $\alpha < \beta$, and
- for every $\alpha < c$, either $X_{\alpha+1}^* \not\subseteq A_\alpha^*$ or $X_{\alpha+1}^* \cap A_\alpha \not\in \Theta$.

For the base stage of the recursion, set $X_0 = \mathbb{N}$.

At the successor stage $\alpha + 1$ of the recursion, assuming X_α has already been defined, there are two cases. If $X_\alpha \cap A_\alpha \not\in \Theta$, then choose $X_{\alpha+1}$ to be any nicely thick subset of X_α such that $X_\alpha^* \setminus X_{\alpha+1}^*$ contains a minimal left ideal. (This is possible by Lemma 4.2.) If $X_\alpha \cap A_\alpha \in \Theta$, then let $X_{\alpha+1}$ be some nicely thick set contained in $X_\alpha \cap A_\alpha$ with the property that $X_\alpha^* \setminus X_{\alpha+1}^*$ contains a minimal left ideal. (Again, this is possible by Lemma 4.2.)

If α is a limit ordinal with $\alpha < c$, then at stage α of the recursion we will have a sequence $\langle X_\beta : \beta < \alpha \rangle$ of nicely thick sets such that $X_\beta^* \supseteq X_\gamma^*$ whenever $\beta < \gamma$. By Lemma 4.4, there is a thick set X_0^0 such that $X_\beta^* \supseteq (X_\lambda^0)^\#$ for all $\beta < \alpha$. Let X_α be any nicely thick set contained in X_0^0. (One exists by Lemma 4.2.) This completes the recursion.

It is clear that $\{X_\alpha : \alpha < c\}$ is a filter base. Let \mathcal{F} be the filter generated by this base, and let

$$L = \hat{F} = \bigcap_{\alpha < c} X_\alpha^*.$$

For each $\alpha < c$, let $R_\alpha = X_\alpha^* \setminus X_{\alpha+1}^*$. Let

$$U = \bigcup \{R_\alpha : \alpha < c, \alpha \text{ even}\} \quad \text{and} \quad V = \bigcup \{R_\alpha : \alpha < c, \alpha \text{ odd}\}$$

where, as usual, an ordinal is called even (respectively, odd) if it is equal to $\lambda + n$, where λ is a limit ordinal and n is even (respectively, odd). Thus U and V are formed each as the union of alternating clopen “rings” (the R_α) from the nested sequence $X_0^* \supseteq X_1^* \supseteq X_2^* \supseteq \cdots \supseteq X_\alpha^* \supseteq X_{\alpha+1}^* \supseteq \cdots$ (where we ignore the non-clopen “rings” occurring at limit stages).

It is clear that U and V are disjoint open sets. That U and V are left separating follows from their definition and Lemma 4.3.
Claim. \(L\) is a minimal left ideal.

Proof of claim. By Lemma 2.4, it suffices to show that \(\mathcal{F}\) is a \(\Theta\)-maximal filter. If \(A \in \Theta\), then \(A = A_\alpha\) for some \(\alpha < c\). At stage \(\alpha + 1\) of our recursion, we ensured that either \(X_{\alpha+1} \cap A_\alpha \notin \Theta\) or that \(X_{\alpha+1} \subseteq A_\alpha\). Thus \(A \in \Theta\) implies that either \(A \in \mathcal{F}\) or \(A \cap X \notin \Theta\) for some \(X \in \mathcal{F}\). Thus there is no proper extension of \(\mathcal{F}\) containing only thick sets.

Claim. For every open \(W \supseteq L\), there is a nicely thick \(A \subseteq \mathbb{N}\) with \(L \subseteq A^* \subseteq W\). In fact, there is some \(\alpha < c\) such that \(L \subseteq X^*_\beta \subseteq W\) for all \(\alpha \leq \beta < c\).

Proof of claim. If \(W\) is open and \(W \supseteq L = \bigcap_{\alpha < c} X^*_\alpha\), then, because this is a decreasing intersection of compact sets, there is some \(\alpha < c\) such that \(L \subseteq X^*_\beta \subseteq W\) for all \(\beta \geq \alpha\). (Otherwise, \(\{X^*_\alpha \setminus W : \alpha < c\}\) would be a set of closed sets with the finite intersection property, so would have nonempty intersection.) Each \(X^*_\beta\) is nicely thick, so this proves the claim.

Claim. \(L \subseteq U \cap K(\beta \mathbb{N})\), and \(L \subseteq V \cap K(\beta \mathbb{N})\).

Proof of claim. We will prove that \(L \subseteq U \cap K(\beta \mathbb{N})\) only, as the corresponding assertion for \(V\) is proved in the same way.

Suppose \(p \in L\) and let \(W\) be a neighborhood of \(p\). We must show that \(W \cap U \cap K(\beta \mathbb{N}) \neq \emptyset\). By a previous claim, \(L\) is a minimal left ideal. By Lemma 2.6 and Theorem 3.4, there are \(A, B \subseteq \mathbb{N}\) such that \(L \subseteq A^*\); \(B\) is syndetic, and \(p \in A^* \cap B^* \subseteq W\).

By the previous claim, there is some \(\alpha < c\) such that \(X^*_\beta \subseteq A^*\) for all \(\beta \geq \alpha\). Let \(\beta \geq \alpha\) be an even successor ordinal, so that

\[R_\beta = X^*_\beta \setminus X^*_{\beta+1} \subseteq A^* \cap U. \]

By construction, \(R_\beta\) contains a minimal left ideal \(L'\). Then

\[L' \subseteq R_\beta \cap K(\beta \mathbb{N}) \subseteq A^* \cap U \cap K(\beta \mathbb{N}). \]

But \(B\) is syndetic, which implies \(B^* \cap L' \neq \emptyset\) by Lemma 2.3. Hence

\[\emptyset \neq B^* \cap L' \subseteq B^* \cap A^* \cap U \cap K(\beta \mathbb{N}) \subseteq W \cap U \cap K(\beta \mathbb{N}). \]

This shows \(W \cap U \cap K(\beta \mathbb{N}) \neq \emptyset\), as desired.

These claims complete the proof of the lemma.

Theorem 4.6. Assuming \(p = c\) (or CH), there is a \(\Sigma\)-maximal filter \(\mathcal{G}\) on \(\mathbb{N}\) and a \(\Theta\)-maximal filter \(\mathcal{F}\) on \(\mathbb{N}\) such that \(\mathcal{G} \cup \mathcal{F}\) does not generate an ultrafilter.

Proof. Let \(U, V\), and \(L\) be as described in Lemma 4.5. Let \(\mathcal{F} = \bigcap L\).

Let \(R\) and \(R'\) be two different minimal right ideals of \(\mathbb{N}^*\), and define

\[C_0 = (U \cap E(R)) \cup (V \cap E(R')) \cup (\mathbb{N}^* \setminus (U \cup V)). \]

If \(L'\) is a minimal left ideal, then because \(U\) and \(V\) are both left-separating, there are three possibilities:

1. \(L' \subseteq U\), in which case \(C_0 \cap L' = \overline{E(R)} \cap L' \neq \emptyset\),
(2) \(L' \subseteq V \), in which case \(C_0 \cap L' = \overline{E(R')} \cap L' \neq \emptyset \), or
(3) \(L' \subseteq \mathbb{N} \setminus (U \cup V) \), in which case \(L' \subseteq C_0 \).

In any case, \(C_0 \cap L' \neq \emptyset \) for every minimal left ideal \(L' \).

Let \(G_0 = \bigcap C_0 \), and observe that \(G_0 \subseteq \Sigma \) by the previous paragraph and
Lemma 2.5. Using Zorn’s Lemma, extend \(G_0 \) to a \(\Sigma \)-maximal filter \(G \) and
let \(C = \hat{G} \).

We claim that \(F \cup G \) does not generate an ultrafilter. We will prove the
equivalent assertion that \(\hat{F} \cap \hat{G} = L \cap C \) contains at least two points.

Let \(e \) denote the unique point of \(L \cap E(R) \), and let \(e' \) denote the unique
point of \(L \cap E(R') \). Because \(R \neq R' \), \(e \neq e' \), and we claim that \(e, e' \in L \cap C \).

We will prove only that \(e \in L \cap C \), because the proof for \(e' \) is the same. We
know \(e \in L \) already, so we must show \(e \in C \).

Aiming for a contradiction, suppose \(e \notin C \). Then there is some open \(W \)
such that \(e \in W \) and \(W \cap C = \emptyset \). By Theorem 3.4, there are \(A, B \subseteq \mathbb{N} \) such
that \(L \subseteq A^* \) and \(E(R) \subseteq B^* \) and \(e \in A^* \cap B^* \subseteq W \). By our choice of \(L \), we
may (and do) assume that \(A \) is nicely thick. By our choice of \(L \) and \(U \), we
have \(e \in U \cap K(\beta\mathbb{N}) \), so

\[A^* \cap B^* \cap U \cap K(\beta\mathbb{N}) \neq \emptyset. \]

Let \(p \in A^* \cap B^* \cap U \cap K(\beta\mathbb{N}) \), and let \(L' \) be the minimal left ideal containing
\(p \). Observe that \(L \cap U = \emptyset \), because \(L \subseteq V \) and \(U \) and \(V \) are disjoint open
sets. As \(p \in U \) and \(p \in L' \), this implies \(L' \neq L \). Because \(U \) and \(A^* \) are both
left-separating and \(p \in A^* \cap U \), we have

\[L' \subseteq A^* \cap U \cap K(\beta\mathbb{N}) \]

Recalling that \(E(R) \subseteq B^* \), this shows that

\[L' \cap E(R) \subseteq A^* \cap B^* \cap U \cap K(\beta\mathbb{N}). \]

Let \(f \) denote the unique element of \(L' \cap E(R) \). On the one hand, we just
showed that \(f \in A^* \cap B^* \subseteq W \), which implies \(f \notin C \). On the other hand,
\(f \in U \) and \(L' \subseteq U \), which implies that

\[C_0 \cap L' = \overline{E(R)} \cap L' = \{ f \}. \]

(The second equality comes from Theorem 2.1.) This shows that \(C \cap L' = \emptyset \).
But \(C = \hat{G} \) with \(G \subseteq \Sigma \), so this contradicts Lemma 2.5. \(\square \)

References

compactification of a discrete space,” in Proceedings of the 8th Winter School in
[3] W. Brian, “\(P \)-sets and minimal right ideals in \(\mathbb{N} \),” Fundamenta Mathematicae 229

W. R. Brian, Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA

*E-mail address: wrbrian.math@gmail.com
URL: wrbrian.wordpress.com*

N. Hindman, Department of Mathematics, Howard University, Washington, DC 20059, USA

*E-mail address: nhindman@aol.com
URL: nhindman.us*