Self-homeomorphisms of \mathbb{N}^* and their quotients

Will Brian

Spring Topology and Dynamics Conference
Auburn University
14 March, 2018
\mathbb{N}^* is the remainder of the Stone-Čech compactification of \mathbb{N}:

$$\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}.$$
the space \mathbb{N}^*

\mathbb{N}^* is the remainder of the Stone-Čech compactification of \mathbb{N}:

$$\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}.$$

- \mathbb{N}^* a compact Hausdorff space. It can be viewed as the space of all non-principal ultrafilters on \mathbb{N}.

\(\mathbb{N}^* \) is the remainder of the Stone-Čech compactification of \(\mathbb{N} \):

\[
\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}.
\]

- \(\mathbb{N}^* \) a compact Hausdorff space. It can be viewed as the space of all non-principal ultrafilters on \(\mathbb{N} \).
- Every compact Hausdorff space of weight \(\leq \aleph_1 \) is a continuous image of \(\mathbb{N}^* \) (Parovičenko, 1963).
The space \mathbb{N}^*

\mathbb{N}^* is the remainder of the Stone-Čech compactification of \mathbb{N}:

$$\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}.$$

- \mathbb{N}^* a compact Hausdorff space. It can be viewed as the space of all non-principal ultrafilters on \mathbb{N}.
- Every compact Hausdorff space of weight $\leq \aleph_1$ is a continuous image of \mathbb{N}^* (Parovičenko, 1963).
- This is a kind of “universal property” for \mathbb{N}^*. Assuming the Continuum Hypothesis, it says that every compact Hausdorff space of weight $\leq \aleph_1$ is a continuous image of \mathbb{N}^*.
trivial self-maps of \mathbb{N}^*

- A *mod-finite permutation* of \mathbb{N} is a bijection $p : A \rightarrow B$, where A, B are co-finite subsets of \mathbb{N}.
A mod-finite permutation of \(\mathbb{N} \) is a bijection \(p : A \rightarrow B \), where \(A, B \) are co-finite subsets of \(\mathbb{N} \).

Example: the successor function \(s(n) = n + 1 \)

\[
\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots
\]
A mod-finite permutation of \mathbb{N} is a bijection $p : A \to B$, where A, B are co-finite subsets of \mathbb{N}.

Example: the successor function $s(n) = n + 1$

$$\cdot \to \cdot \to \cdot \to \cdot \to \cdot \to \cdots$$

If p is a mod-finite permutation of \mathbb{N}, then it induces a self-homeomorphism $p^* : \mathbb{N}^* \to \mathbb{N}^*$, defined by taking $A \in p^*(\mathcal{U}) \iff p^{-1}[A] \in \mathcal{U}$.
trivial self-maps of \mathbb{N}^*

- A *mod-finite permutation* of \mathbb{N} is a bijection $p : A \rightarrow B$, where A, B are co-finite subsets of \mathbb{N}.

 Example: the successor function $s(n) = n + 1$

 $$\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots$$

- If p is a mod-finite permutation of \mathbb{N}, then it induces a self-homeomorphism $p^* : \mathbb{N}^* \rightarrow \mathbb{N}^*$, defined by taking

 $$A \in p^*(\mathcal{U}) \iff p^{-1}[A] \in \mathcal{U}.$$

 Example: $s^*(\mathcal{U})$ is the ultrafilter generated by $\{A + 1 : A \in \mathcal{U}\}$.
A *mod-finite permutation* of \(\mathbb{N} \) is a bijection \(p : A \rightarrow B \), where \(A, B \) are co-finite subsets of \(\mathbb{N} \).

Example: the successor function \(s(n) = n + 1 \)

\[
\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots
\]

If \(p \) is a mod-finite permutation of \(\mathbb{N} \), then it induces a self-homeomorphism \(p^* : \mathbb{N}^* \rightarrow \mathbb{N}^* \), defined by taking

\[
A \in p^*(\mathcal{U}) \iff p^{-1}[A] \in \mathcal{U}.
\]

Example: \(s^*(\mathcal{U}) \) is the ultrafilter generated by \(\{A + 1 : A \in \mathcal{U}\} \).

Self-homeomorphisms of \(\mathbb{N}^* \) arising in this way are called *trivial*.

trivial self-maps of \(\mathbb{N}^* \)
What are the quotients of these trivial maps?

Recall that a map $f : X \to X$ is a *quotient* of a map $g : Y \to Y$ if there is a continuous surjection $q : Y \to X$ such that $q \circ g = f \circ q$.

![Diagram](image_url)
What are the quotients of these trivial maps?

Recall that a map $f : X \to X$ is a \textit{quotient} of a map $g : Y \to Y$ if there is a continuous surjection $q : Y \to X$ such that $q \circ g = f \circ q$.

\[
\begin{array}{ccc}
Y & \xrightarrow{g} & Y \\
\downarrow q & & \downarrow q \\
X & \xrightarrow{f} & X
\end{array}
\]

\textbf{Question}

\textit{If p is a mod-finite permutation of \mathbb{N}, then what are the quotients of $p^* : \mathbb{N}^* \to \mathbb{N}^*$?}
An external characterization

Theorem

\[f : X \to X \text{ is a quotient of } p^* \text{ if and only if there is some } Z \supseteq X \text{ and some } h : Z \to Z \text{ such that, in } Z, X \text{ is the limit of a "}p\text{-like}\text{" sequence of points}. \]
Theorem

$f : X \to X$ is a quotient of p^* if and only if there is some $Z \supseteq X$ and some $h : Z \to Z$ such that, in Z, X is the limit of a "p-like" sequence of points.
Theorem

\(f : X \to X \) is a quotient of \(p^* \) if and only if there is some \(Z \supseteq X \) and some \(h : Z \to Z \) such that, in \(Z \), \(X \) is the limit of a "\(p \)-like" sequence of points.
An external characterization

Theorem

$f : X \to X$ is a quotient of p^* if and only if there is some $Z \supseteq X$ and some $h : Z \to Z$ such that, in Z, X is the limit of a "p-like" sequence of points.
Theorem

\[f : X \rightarrow X \text{ is a quotient of } p^* \text{ if and only if there is some } Z \supseteq X \text{ and some } h : Z \rightarrow Z \text{ such that, in } Z, \text{ } X \text{ is the limit of a "p-like" sequence of points.} \]
An external characterization

Theorem

\(f : X \to X \) is a quotient of \(p^* \) if and only if there is some \(Z \supseteq X \) and some \(h : Z \to Z \) such that, in \(Z \), \(X \) is the limit of a "\(p \)-like" sequence of points.
An external characterization

Theorem

\[f : X \to X \text{ is a quotient of } p^* \text{ if and only if there is some } Z \supseteq X \text{ and some } h : Z \to Z \text{ such that, in } Z, \text{ } X \text{ is the limit of a "p-like" sequence of points.} \]
An external characterization

Theorem

$f : X \to X$ is a quotient of p^* if and only if there is some $Z \supseteq X$ and some $h : Z \to Z$ such that, in Z, X is the limit of a "p-like" sequence of points.

What about an “internal” characterization of these quotients?
Finite diagrams of a map

Suppose $f : X \to X$ is a continuous function and \mathcal{V} is an open cover of X.

Consider the relation on \mathcal{V} given by $V \to W$ iff $f(V) \cap W \neq \emptyset$. The structure (\mathcal{V}, \to) is a directed graph (possibly with loops). Any loopy directed graph that is isomorphic to one arising this way is called a diagram D_f. Roughly, a finite diagram encodes a finite amount of combinatorial information about the structure of f.

Will Brian
Self-homeomorphisms of \mathbb{N}^* and their quotients
Finite diagrams of a map

Suppose $f : X \to X$ is a continuous function and \mathcal{V} is an open cover of X.

Consider the relation on \mathcal{V} given by

$$V \to W \quad \text{iff} \quad f(V) \cap W \neq \emptyset.$$
Finite diagrams of a map

Suppose $f : X \to X$ is a continuous function and \mathcal{V} is an open cover of X.

Consider the relation on \mathcal{V} given by

$$\mathcal{V} \to \mathcal{W} \quad \text{iff} \quad f(\mathcal{V}) \cap \mathcal{W} \neq \emptyset.$$

The structure (\mathcal{V}, \to) is a directed graph (possibly with loops). Any loopy directed graph that is isomorphic to one arising this way is called a \textit{diagram} for f.
Finite diagrams of a map

Suppose $f : X \to X$ is a continuous function and \mathcal{V} is an open cover of X.

Consider the relation on \mathcal{V} given by

$$V \to W \quad \text{iff} \quad f(V) \cap W \neq \emptyset.$$

The structure (\mathcal{V}, \to) is a directed graph (possibly with loops). Any loopy directed graph that is isomorphic to one arising this way is called a *diagram* for f.

Roughly, a finite diagram encodes a finite amount of combinatorial information about the structure of f.
Two examples

The map:

\[
\begin{align*}
\text{id} & \quad \text{on } [0, 1] \\
\theta & \mapsto \theta + \frac{\pi}{2}
\end{align*}
\]

on S^1
Two examples

the map: \(\text{id on } [0, 1] \)

the cover: \[\]

\(\theta \mapsto \theta + \frac{\pi}{2} \) on \(S^1 \)
Two examples

the map:

\[\text{id on } [0, 1] \]

\[\theta \mapsto \theta + \frac{\pi}{2} \text{ on } S^1 \]

the cover:

the digraph:
Observation

If $f : X \to X$ is a quotient of $g : Y \to Y$, then every diagram for f is also a diagram for g.
Observation

If $f : X \to X$ is a quotient of $g : Y \to Y$, then every diagram for f is also a diagram for g.

Proof:

- Let $f : X \to X$ be a quotient of $g : Y \to Y$, and let $q : Y \to X$ be a quotient mapping.
Observation

If $f : X \to X$ is a quotient of $g : Y \to Y$, then every diagram for f is also a diagram for g.

Proof:

- Let $f : X \to X$ be a quotient of $g : Y \to Y$, and let $q : Y \to X$ be a quotient mapping.
- Let \mathcal{V} be an open cover for X witnessing that some particular digraph G is a diagram for f.
Observation

If $f : X \rightarrow X$ is a quotient of $g : Y \rightarrow Y$, then every diagram for f is also a diagram for g.

Proof:

- Let $f : X \rightarrow X$ be a quotient of $g : Y \rightarrow Y$, and let $q : Y \rightarrow X$ be a quotient mapping.
- Let \mathcal{V} be an open cover for X witnessing that some particular digraph G is a diagram for f.
- Pull \mathcal{V} back under q to get an open cover of Y.
Observation

If \(f : X \to X \) is a quotient of \(g : Y \to Y \), then every diagram for \(f \) is also a diagram for \(g \).

Proof:

- Let \(f : X \to X \) be a quotient of \(g : Y \to Y \), and let \(q : Y \to X \) be a quotient mapping.
- Let \(\mathcal{V} \) be an open cover for \(X \) witnessing that some particular digraph \(G \) is a diagram for \(f \).
- Pull \(\mathcal{V} \) back under \(q \) to get an open cover of \(Y \).
- Because \(q \circ g = f \circ q \), this open cover will witness that \(G \) is a diagram for \(g \).
For trivial self-homeomorphisms of \mathbb{N}^*, this necessary condition turns out to be sufficient as well:

Main Theorem

Let $f : X \to X$ be continuous, with the weight of X at most \aleph_1. If p is a mod-finite permutation of \mathbb{N}, then f is a quotient of p^* if and only if every finite diagram for f is also a diagram for p^*.
For trivial self-homeomorphisms of \mathbb{N}^*, this necessary condition turns out to be sufficient as well:

Main Theorem

Let $f : X \to X$ be continuous, with the weight of X at most \aleph_1. If p is a mod-finite permutation of \mathbb{N}, then f is a quotient of p^* if and only if every finite diagram for f is also a diagram for p^*.

Corollary

Let p be a mod-finite permutation of \mathbb{N}. Assuming the Continuum Hypothesis, a continuous function $f : X \to X$ is a quotient of p^* if and only if

1. X is a continuous image of \mathbb{N}^*, and
2. every finite diagram for f is also a diagram for p^*.
Let \(t \) be the permutation of \(\mathbb{N} \times \mathbb{Z} \) given by \(t(n, z) = (n, z + 1) \).
(By reindexing, we may consider it a permutation of \(\mathbb{N} \)).

\[
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
: \quad : \quad : \quad :
\]
Let t be the permutation of $\mathbb{N} \times \mathbb{Z}$ given by $t(n, z) = (n, z + 1)$. (By reindexing, we may consider it a permutation of \mathbb{N}.)

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]
\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]
\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \]

Corollary

Every dynamical system of weight $\leq \aleph_1$ is a quotient of t^.*
Let t be the permutation of $\mathbb{N} \times \mathbb{Z}$ given by $t(n, z) = (n, z + 1)$. (By reindexing, we may consider it a permutation of \mathbb{N}.)

\[
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots
\]

\[
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots
\]

\[
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots
\]

\[
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots
\]

Corollary

Every dynamical system of weight $\leq \aleph_1$ is a quotient of t^. Consequently, the Continuum Hypothesis implies that t^* is a "universal" dynamical system of weight $\leq c$.***
By applying Stone duality, we may translate this result into a statement about Boolean algebras:

Dual corollary

Let \(\tau \) be the automorphism of the Boolean algebra \(\mathcal{P}(\mathbb{N})/\text{fin} \) induced by the map \(t \).
By applying Stone duality, we may translate this result into a statement about Boolean algebras:

Dual corollary

Let \(\tau \) be the automorphism of the Boolean algebra \(\mathcal{P}(\mathbb{N})/\text{fin} \) induced by the map \(t \).

If \(\alpha \) is any automorphism of any Boolean algebra \(A \) of size \(\leq \aleph_1 \), then there is a subalgebra \(B \) of \(\mathcal{P}(\mathbb{N})/\text{fin} \) such that \((A, \alpha)\) is isomorphic to \((B, \tau \restriction B)\).
By applying Stone duality, we may translate this result into a statement about Boolean algebras:

Dual corollary

Let τ be the automorphism of the Boolean algebra $\mathcal{P}(\mathbb{N})/\text{fin}$ induced by the map t.

If α is any automorphism of any Boolean algebra \mathcal{A} of size $\leq \aleph_1$, then there is a subalgebra \mathcal{B} of $\mathcal{P}(\mathbb{N})/\text{fin}$ such that (\mathcal{A}, α) is isomorphic to $(\mathcal{B}, \tau_{\restriction \mathcal{B}})$.

Consequently, the Continuum Hypothesis implies that τ is a “universal” automorphism for Boolean algebras of size $\leq c$.
"full" dynamical systems

Let us recall our observation from a previous slide:

\[f \text{ is a quotient of } g \implies \text{every finite diagram for } f \text{ is a diagram for } g. \]
"full" dynamical systems

Let us recall our observation from a previous slide:

\[f \text{ is a quotient of } g \implies \text{ every finite diagram for } f \text{ is a diagram for } g. \]

Definition

Let us say that a dynamical system \(g \) is \textit{full} if this implication reverses for all metrizable \(f \).

Roughly, \(g \) is full if it has as many metrizable quotients as possible.
"full" dynamical systems

Let us recall our observation from a previous slide:

\[f \text{ is a quotient of } g \quad \Rightarrow \quad \text{every finite diagram for } f \text{ is a diagram for } g. \]

Definition

Let us say that a dynamical system \(g \) is *full* if this implication reverses for all metrizable \(f \).

Roughly, \(g \) is full if it has as many metrizable quotients as possible.

Question

What dynamical systems have this property? Can we classify them, or at least prove interesting theorems in this direction?
Thank you for listening