About βN

Will Brian

The University of North Carolina at Charlotte

5 December, 2016
Measures on the natural numbers

An *ultrafilter* is a function $\mu : \mathcal{P}(\mathbb{N}) \to \{0, 1\}$ such that

1. $\mu(\emptyset) = 0$ and $\mu(\mathbb{N}) = 1$.
2. If A_0, A_1, \ldots, A_n are disjoint subsets of \mathbb{N}, then

$$
\mu \left(\bigcup_{i \leq n} A_i \right) = \sum_{i \leq n} \mu(A_i).
$$
Measures on the natural numbers

An *ultrafilter* is a function $\mu : \mathcal{P}(\mathbb{N}) \to \{0, 1\}$ such that

1. $\mu(\emptyset) = 0$ and $\mu(\mathbb{N}) = 1$.
2. If A_0, A_1, \ldots, A_n are disjoint subsets of \mathbb{N}, then

 $$\mu\left(\bigcup_{i \leq n} A_i\right) = \sum_{i \leq n} \mu(A_i).$$

In other words, an ultrafilter is a finitely additive 0-1-valued measure on the natural numbers, for which every subset of \mathbb{N} is measurable.
Measures on the natural numbers

An *ultrafilter* is a function $\mu : \mathcal{P}(\mathbb{N}) \rightarrow \{0, 1\}$ such that

1. $\mu(\emptyset) = 0$ and $\mu(\mathbb{N}) = 1$.
2. If A_0, A_1, \ldots, A_n are disjoint subsets of \mathbb{N}, then

$$\mu\left(\bigcup_{i \leq n} A_i\right) = \sum_{i \leq n} \mu(A_i).$$

In other words, an ultrafilter is a finitely additive 0-1-valued measure on the natural numbers, for which every subset of \mathbb{N} is measurable.

Observe that:

3. If A_0, A_1, \ldots, A_n form a partition of \mathbb{N}, then μ assigns measure 1 to precisely one of the A_i, and measure 0 to all the rest.
Principal vs. non-principal

For example, to each $n \in \mathbb{N}$ we can associate an ultrafilter μ_n, the “delta measure” at n, defined by

$$\mu_n(A) = \begin{cases} 0 & \text{if } n \notin A \\ 1 & \text{if } n \in A. \end{cases}$$
Principal vs. non-principal

For example, to each $n \in \mathbb{N}$ we can associate an ultrafilter μ_n, the “delta measure” at n, defined by

$$\mu_n(A) = \begin{cases}
0 & \text{if } n \notin A \\
1 & \text{if } n \in A.
\end{cases}$$

Ultrafilters like these are called principal, and all other ultrafilters are called non-principal.
Principal vs. non-principal

For example, to each $n \in \mathbb{N}$ we can associate an ultrafilter μ_n, the “delta measure” at n, defined by

$$\mu_n(A) = \begin{cases} 0 & \text{if } n \notin A \\ 1 & \text{if } n \in A. \end{cases}$$

Ultrafilters like these are called principal, and all other ultrafilters are called non-principal.

- By finite additivity, an ultrafilter μ is non-principal if and only if $\mu(F) = 0$ for every finite $F \subseteq \mathbb{N}$.
Principal vs. non-principal

For example, to each $n \in \mathbb{N}$ we can associate an ultrafilter μ_n, the “delta measure” at n, defined by

$$
\mu_n(A) = \begin{cases}
0 & \text{if } n \notin A \\
1 & \text{if } n \in A.
\end{cases}
$$

Ultrafilters like these are called principal, and all other ultrafilters are called non-principal.

- By finite additivity, an ultrafilter μ is non-principal if and only if $\mu(F) = 0$ for every finite $F \subseteq \mathbb{N}$.
- The existence of non-principal ultrafilters is proved using the Axiom of Choice.
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Limits along an ultrafilter

Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Ultrafilters can be used to pick out limits of sequences:
Our first definition of $\beta\mathbb{N}$

More generally, if X is any compact Hausdorff space and \(\langle x_n : n \in \mathbb{N} \rangle \) is any sequence of points in X, then an ultrafilter μ can be used to assign a unique “limit” to the sequence:
Our first definition of βN

More generally, if X is any compact Hausdorff space and $\langle x_n : n \in \mathbb{N} \rangle$ is any sequence of points in X, then an ultrafilter μ can be used to assign a unique “limit” to the sequence:

$$\mu \text{-lim}_{n \in \mathbb{N}} x_n = \bigcap_{A \subseteq \mathbb{N}, \ \mu(A)=1} \{x_n : n \in A\}.$$
Our first definition of $\beta\mathbb{N}$

More generally, if X is any compact Hausdorff space and $\langle x_n : n \in \mathbb{N} \rangle$ is any sequence of points in X, then an ultrafilter μ can be used to assign a unique “limit” to the sequence:

$$\mu\text{-}\lim_{n \in \mathbb{N}} x_n = \bigcap_{A \subseteq \mathbb{N}, \mu(A) = 1} \{x_n : n \in A\}.$$

In other words, every ultrafilter μ gives rise to an operator $\mu\text{-}\lim_{n \in \mathbb{N}}$ on compact Hausdorff spaces that assigns to every sequence of points one of its accumulation points.
Our first definition of $\beta\mathbb{N}$

More generally, if X is any compact Hausdorff space and $\langle x_n : n \in \mathbb{N} \rangle$ is any sequence of points in X, then an ultrafilter μ can be used to assign a unique “limit” to the sequence:

$$\mu\text{-}\lim_{n \in \mathbb{N}} x_n = \bigcap_{A \subseteq \mathbb{N}, \mu(A)=1} \{x_n : n \in A\}.$$

In other words, every ultrafilter μ gives rise to an operator $\mu\text{-}\lim_{n \in \mathbb{N}}$ on compact Hausdorff spaces that assigns to every sequence of points one of its accumulation points. Furthermore, this operation is well-behaved with respect to continuous functions: if $f : X \to Y$ is continuous, then $f(\mu\text{-}\lim_{n \in \mathbb{N}} x_n) = \mu\text{-}\lim_{n \in \mathbb{N}} f(x_n)$.
Our first definition of βN

More generally, if X is any compact Hausdorff space and $\langle x_n : n \in \mathbb{N} \rangle$ is any sequence of points in X, then an ultrafilter μ can be used to assign a unique “limit” to the sequence:

$$\mu\text{-}\lim_{n \in \mathbb{N}} x_n = \bigcap_{A \subseteq \mathbb{N}, \, \mu(A) = 1} \{x_n : n \in A\}.$$

In other words, every ultrafilter μ gives rise to an operator $\mu\text{-}\lim_{n \in \mathbb{N}}$ on compact Hausdorff spaces that assigns to every sequence of points one of its accumulation points. Furthermore, this operation is well-behaved with respect to continuous functions: if $f : X \to Y$ is continuous, then $f(\mu\text{-}\lim_{n \in \mathbb{N}} x_n) = \mu\text{-}\lim_{n \in \mathbb{N}} f(x_n)$.

βN is the set of all ultrafilters.
The space of all ultrafilters

- \(\beta\mathbb{N}\) has a standard topology on it. For every \(A \subseteq \mathbb{N}\), let

\[
\overline{A} = \{\mu \in \beta\mathbb{N} : \mu(A) = 1\}.
\]

The sets of this form provide a basis for the standard topology on \(\beta\mathbb{N}\). In this topology, \(\overline{A}\) is both open and closed.
The space of all ultrafilters

- $\beta \mathbb{N}$ has a standard topology on it. For every $A \subseteq \mathbb{N}$, let
 \[\overline{A} = \{ \mu \in \beta \mathbb{N} : \mu(A) = 1 \}. \]

 The sets of this form provide a basis for the standard topology on $\beta \mathbb{N}$. In this topology, \overline{A} is both open and closed.

- With this topology, $\beta \mathbb{N}$ is a compact Hausdorff space.
The space of all ultrafilters

- $\beta \mathbb{N}$ has a standard topology on it. For every $A \subseteq \mathbb{N}$, let
 \[\overline{A} = \{ \mu \in \beta \mathbb{N} : \mu(A) = 1 \}. \]
 The sets of this form provide a basis for the standard topology on $\beta \mathbb{N}$. In this topology, \overline{A} is both open and closed.

- With this topology, $\beta \mathbb{N}$ is a compact Hausdorff space.

- \mathbb{N}^* denotes the subspace of $\beta \mathbb{N}$ consisting of only the non-principal ultrafilters. \mathbb{N}^* is also a compact Hausdorff space.
The space of all ultrafilters

- $\beta\mathbb{N}$ has a standard topology on it. For every $A \subseteq \mathbb{N}$, let

$$\overline{A} = \{ \mu \in \beta\mathbb{N} : \mu(A) = 1 \}.$$

The sets of this form provide a basis for the standard topology on $\beta\mathbb{N}$. In this topology, \overline{A} is both open and closed.

- With this topology, $\beta\mathbb{N}$ is a compact Hausdorff space.

- \mathbb{N}^* denotes the subspace of $\beta\mathbb{N}$ consisting of only the non-principal ultrafilters. \mathbb{N}^* is also a compact Hausdorff space.

- The space $\beta\mathbb{N}$ is known as the *Stone-Čech compactification* of \mathbb{N}, and \mathbb{N}^* is known as its *remainder*.
It’s a strange space

The spaces $\beta \mathbb{N}$ and \mathbb{N}^* have some pathological properties:
- Both spaces have size 2^{\aleph_0}.
It’s a strange space

The spaces $\beta\mathbb{N}$ and \mathbb{N}^* have some pathological properties:

- Both spaces have size 2^{\aleph_0}.
- Neither space is metrizable. In fact, neither space contains a convergent sequence.
The spaces $\beta\mathbb{N}$ and \mathbb{N}^* have some pathological properties:

- Both spaces have size $2^{2^{\aleph_0}}$.
- Neither space is metrizable. In fact, neither space contains a convergent sequence.
- $\beta\mathbb{N}$ is separable, but not hereditarily separable. \mathbb{N}^* is a non-separable subspace of $\beta\mathbb{N}$.
The spaces $\beta\mathbb{N}$ and \mathbb{N}^* have some pathological properties:

- Both spaces have size $2^{2^{\aleph_0}}$.
- Neither space is metrizable. In fact, neither space contains a convergent sequence.
- $\beta\mathbb{N}$ is separable, but not hereditarily separable. \mathbb{N}^* is a non-separable subspace of $\beta\mathbb{N}$.
- In fact, every separable subspace of \mathbb{N}^* is nowhere dense.
It’s a strange space

The spaces $\beta \mathbb{N}$ and \mathbb{N}^* have some pathological properties:

- Both spaces have size $2^{2^{\aleph_0}}$.
- Neither space is metrizable. In fact, neither space contains a convergent sequence.
- $\beta \mathbb{N}$ is separable, but not hereditarily separable. \mathbb{N}^* is a non-separable subspace of $\beta \mathbb{N}$.
- In fact, every separable subspace of \mathbb{N}^* is nowhere dense.
- Many topological properties of $\beta \mathbb{N}$ and \mathbb{N}^* are known to be independent of ZFC.
\(\beta N\) is a set, a topological space, a dynamical system, and a semigroup. It’s a universal space.

\(\beta N\) is “universal” for sufficiently small compact Hausdorff spaces:

\[\text{Theorem}\]

Every compact metric space is a continuous image of \(\beta N\) and \(N^*\).

(Parovičenko, 1963)

Every compact space of weight \(\leq \aleph_1\) is a continuous image of \(N^\ast\).

(Kunen, 1968)

The same cannot necessarily be said for spaces of weight \(\aleph_2\), even when the Continuum Hypothesis fails badly.
It’s a universal space

βN is “universal” for sufficiently small compact Hausdorff spaces:

Theorem

- Every compact metric space is a continuous image of βN and \mathbb{N}^*.
It’s a universal space

\(\beta\mathbb{N}\) is “universal” for sufficiently small compact Hausdorff spaces:

Theorem

- *Every compact metric space is a continuous image of \(\beta\mathbb{N}\) and \(\mathbb{N}^*\).*
- *(Parovičenko, 1963) Every compact space of weight \(\leq \mathfrak{N}_1\) is a continuous image of \(\mathbb{N}^*\).*
It’s a universal space

\(\beta \mathbb{N} \) is “universal” for sufficiently small compact Hausdorff spaces:

Theorem

- Every compact metric space is a continuous image of \(\beta \mathbb{N} \) and \(\mathbb{N}^* \).
- (Parovičenko, 1963) Every compact space of weight \(\leq \aleph_1 \) is a continuous image of \(\mathbb{N}^* \).
- (Kunen, 1968) The same cannot necessarily be said for spaces of weight \(\aleph_2 \), even when the Continuum Hypothesis fails badly.
A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.
Dynamical systems and omega-limit sets

A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \rightarrow X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \{ f^m(x) : m \geq n \}.$$
Dynamical systems and omega-limit sets

A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \left\{ f^m(x) : m \geq n \right\}.$$
Dynamical systems and omega-limit sets

A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \{f^m(x) : m \geq n\}.$$

[Diagram showing a point x and its orbit $f(x)$ within the space X.]
Dynamical systems and omega-limit sets

A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \{f^m(x) : m \geq n\}.$$
Dynamical systems and omega-limit sets

A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \{f^m(x) : m \geq n\}.$$
Dynamical systems and omega-limit sets

A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \left\{ f^m(x) : m \geq n \right\}.$$
A *dynamical system* is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

Given a dynamical system (X, f) and a point $x \in X$, the *omega-limit set* of x is the set of all limit points of the orbit of x:

$$\omega_f(x) = \bigcap_{n \in \mathbb{N}} \{ f^m(x) : m \geq n \}.$$
Abstract omega-limit sets

An *abstract omega-limit set* is a dynamical system that is isomorphic (or *conjugate*) to an omega-limit set.
Abstract omega-limit sets

An abstract omega-limit set is a dynamical system that is isomorphic (or conjugate) to an omega-limit set.

An omega-limit set

\[x \xrightarrow{f} f(x) \xrightarrow{f^2} f^2(x) \xrightarrow{f^3} f^3(x) \xrightarrow{\cdots} \omega_f(x) \]
Abstract omega-limit sets

An *abstract omega-limit set* is a dynamical system that is isomorphic (or conjugate) to an omega-limit set.
There is a standard map $\sigma : \beta \mathbb{N} \to \beta \mathbb{N}$ making $\beta \mathbb{N}$ into a dynamical system: given $\mu \in \beta \mathbb{N}$, $\sigma(\mu)$ is defined to be the unique ultrafilter such that, for every $A \subseteq \mathbb{N}$,

$$\sigma(\mu)(A) = 1 \iff \mu(A - 1) = 1.$$
There is a standard map \(\sigma : \beta \mathbb{N} \rightarrow \beta \mathbb{N} \) making \(\beta \mathbb{N} \) into a dynamical system: given \(\mu \in \beta \mathbb{N} \), \(\sigma(\mu) \) is defined to be the unique ultrafilter such that, for every \(A \subseteq \mathbb{N} \),

\[
\sigma(\mu)(A) = 1 \iff \mu(A - 1) = 1.
\]

This map is called the \textit{shift map}. It is a continuous injection \(\beta \mathbb{N} \rightarrow \beta \mathbb{N} \), and it restricts to a self-homeomorphism \(\mathbb{N}^* \rightarrow \mathbb{N}^* \).
There is a standard map $\sigma : \beta\mathbb{N} \to \beta\mathbb{N}$ making $\beta\mathbb{N}$ into a dynamical system: given $\mu \in \beta\mathbb{N}$, $\sigma(\mu)$ is defined to be the unique ultrafilter such that, for every $A \subseteq \mathbb{N}$,

$$\sigma(\mu)(A) = 1 \iff \mu(A - 1) = 1.$$

This map is called the \textit{shift map}. It is a continuous injection $\beta\mathbb{N} \to \beta\mathbb{N}$, and it restricts to a self-homeomorphism $\mathbb{N}^* \to \mathbb{N}^*$. Within $(\beta\mathbb{N}, \sigma)$, \mathbb{N}^* is an omega limit set: if μ_n is any principal ultrafilter then $\omega_{\sigma}(\mu_n) = \mathbb{N}^*$.
There is a standard map $\sigma : \beta \mathbb{N} \to \beta \mathbb{N}$ making $\beta \mathbb{N}$ into a dynamical system: given $\mu \in \beta \mathbb{N}$, $\sigma(\mu)$ is defined to be the unique ultrafilter such that, for every $A \subseteq \mathbb{N}$,
\[
\sigma(\mu)(A) = 1 \iff \mu(A - 1) = 1.
\]
This map is called the *shift map*. It is a continuous injection $\beta \mathbb{N} \to \beta \mathbb{N}$, and it restricts to a self-homeomorphism $\mathbb{N}^* \to \mathbb{N}^*$.

Within $(\beta \mathbb{N}, \sigma)$, \mathbb{N}^* is an omega limit set: if μ_n is any principal ultrafilter then $\omega_\sigma(\mu_n) = \mathbb{N}^*$. Therefore (\mathbb{N}^*, σ) is an abstract omega-limit set.
Universality, again . . .

\((\mathbb{N}^*, \sigma)\) is universal as an abstract omega-limit set:
Universality, again . . .

(\mathbb{N}^*, σ) is universal as an abstract omega-limit set:

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a continuous image of (\mathbb{N}^*, σ).
Universality, again . . .

$$(\mathbb{N}^*, \sigma)$$ is universal as an abstract omega-limit set:

Theorem

A dynamical system is an abstract omega-limit set if and only if it is a continuous image of $$(\mathbb{N}^*, \sigma)$$.

One direction of this theorem is proved by taking limits along ultrafilters: if $$(X, f)$$ is a dynamical system and $x \in X$, then $\mu \mapsto \mu\text{-}\lim_{n \in \mathbb{N}} f^n(x)$ is a continuous mapping of $$(\mathbb{N}^*, \sigma)$$ onto $$(\omega f(x), f)$$.

\((X, f) \) is called weakly incompressible if for every closed \(K \subseteq X \) with \(\emptyset \neq K \neq X \), we have \(f(K) \not\subseteq \text{Int}(K) \).
\((X, f)\) is called \textit{weakly incompressible} if for every closed \(K \subseteq X\) with \(\emptyset \neq K \neq X\), we have \(f(K) \nsubseteq \text{Int}(K)\).

\textbf{Theorem}

- (Bowen, 1975) A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.
(X, f) is called weakly incompressible if for every closed \(K \subseteq X \) with \(\emptyset \neq K \neq X \), we have \(f(K) \not\subseteq \text{Int}(K) \).

Theorem

- (Bowen, 1975) A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.
- (B., 2016) A dynamical system of weight \(\leq \aleph_1 \) is an abstract omega-limit set if and only if it is weakly incompressible.
\((X, f)\) is called *weakly incompressible* if for every closed \(K \subseteq X\) with \(\emptyset \neq K \neq X\), we have \(f(K) \not\subseteq \text{Int}(K)\).

Theorem

- (Bowen, 1975) A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.
- (B., 2016) A dynamical system of weight \(\leq \aleph_1\) is an abstract omega-limit set if and only if it is weakly incompressible.
- (B., 2015) *The same cannot necessarily be said for spaces of weight \(\aleph_2\), even when the Continuum Hypothesis fails badly.*
(X, f) is called weakly incompressible if for every closed K ⊆ X with ∅ ≠ K ≠ X, we have f(K) ⊈ Int(K).

Theorem

- (Bowen, 1975) A metrizable dynamical system is an abstract omega-limit set if and only if it is weakly incompressible.
- (B., 2016) A dynamical system of weight ≤ ℵ₁ is an abstract omega-limit set if and only if it is weakly incompressible.
- (B., 2015) The same cannot necessarily be said for spaces of weight ℵ₂, even when the Continuum Hypothesis fails badly.
- (B., 2016) Every dynamical system of weight ≤ ℵ₁ is a continuous image of a subsystem of (N*, σ).
And it’s useful too!

These universal properties of βN have many applications:

Theorem (Auslander, 1960)
In every dynamical system, every point is proximal to a minimal point.

Theorem (B. (2015), Oprocha (2015))
If $\left(X, f \right)$ is a metrizable dynamical system (with metric d), then the following are equivalent:

1. For any sequence ξ of points in X, any ultrafilter μ, and any $\varepsilon > 0$, there is some $x \in X$ such that μ-almost-always, $d(\xi(n), f^n(x)) < \varepsilon$.

2. X has a dense set of minimal points.
And it’s useful too!

These universal properties of βN have many applications:

Theorem (Auslander, 1960)

In every dynamical system, every point is proximal to a minimal point.
And it’s useful too!

These universal properties of βN have many applications:

Theorem (Auslander, 1960)

In every dynamical system, every point is proximal to a minimal point.

Theorem (B. (2015), Oprocha (2015))

If (X, f) is a metrizable dynamical system (with metric d), then the following are equivalent:

1. For any sequence ξ of points in X, any ultrafilter μ, and any $\varepsilon > 0$, there is some $x \in X$ such that μ-almost-always, $d(\xi(n), f^n(x)) < \varepsilon$.

2. X has a dense set of minimal points.
Taking ultrafilter limits of ultrafilters

For $\mu, \nu \in \beta \mathbb{N}$, define

$$\mu + \nu = \mu \lim_{n \in \mathbb{N}} \sigma^n(\nu).$$
Taking ultrafilter limits of ultrafilters

For $\mu, \nu \in \beta N$, define

$$\mu + \nu = \mu-\lim_{n \in \mathbb{N}} \sigma^n(\nu).$$

- From a measure-theoretic point of view, $\mu + \nu$ is simply the convolution $\mu \ast \nu$ of the finitely additive measures μ and ν.

Will Brian About βN
Taking ultrafilter limits of ultrafilters

For $\mu, \nu \in \beta\mathbb{N}$, define

$$\mu + \nu = \mu-\lim_{n \in \mathbb{N}} \sigma^n(\nu).$$

- From a measure-theoretic point of view, $\mu + \nu$ is simply the convolution $\mu * \nu$ of the finitely additive measures μ and ν.
- If $m, n \in \mathbb{N}$, then $\mu_m + \mu_n = \mu_{m+n}$. Thus we may think of this operation as generalizing the usual addition operation on \mathbb{N}.
Taking ultrafilter limits of ultrafilters

For $\mu, \nu \in \beta N$, define

$$\mu + \nu = \mu - \lim_{n \in \mathbb{N}} \sigma^n(\nu).$$

- From a measure-theoretic point of view, $\mu + \nu$ is simply the convolution $\mu \ast \nu$ of the finitely additive measures μ and ν.
- If $m, n \in \mathbb{N}$, then $\mu_m + \mu_n = \mu_{m+n}$. Thus we may think of this operation as generalizing the usual addition operation on \mathbb{N}.
- This operation is associative, so $(\beta N, +)$ is a semigroup, and $(\mathbb{N}^*, +)$ is a subsemigroup of it.
Taking ultrafilter limits of ultrafilters

For $\mu, \nu \in \beta\mathbb{N}$, define

$$\mu + \nu = \mu-\lim_{n \in \mathbb{N}} \sigma^n(\nu).$$

- From a measure-theoretic point of view, $\mu + \nu$ is simply the convolution $\mu * \nu$ of the finitely additive measures μ and ν.
- If $m, n \in \mathbb{N}$, then $\mu_m + \mu_n = \mu_{m+n}$. Thus we may think of this operation as generalizing the usual addition operation on \mathbb{N}.
- This operation is associative, so $(\beta\mathbb{N}, +)$ is a semigroup, and $(\mathbb{N}^*, +)$ is a subsemigroup of it.
- An alternative (but equivalent) definition:

$$ (\mu + \nu)(A) = 1 \iff \mu(\{n : \nu(A - n) = 1\}) = 1. $$
As in any semigroup, $\mu \in \beta N$ is called *idempotent* if $\mu + \mu = \mu$.
As in any semigroup, \(\mu \in \beta N \) is called *idempotent* if \(\mu + \mu = \mu \). In this context, \(\mu \) is idempotent if and only if for any \(\mu \)-large set \(A \), the set of all \(n \) such that \(A - n \) is \(\mu \)-large is \(\mu \)-large.

Theorem (Numakura (1952) and Ellis (1958)) \(\beta N \) contains idempotents. More precisely, if \(K \) is any closed subset of \(\beta N \) that is closed under \(\sigma \), then \(K \) contains an idempotent ultrafilter (in fact, it contains \(2^{2^{\aleph_0}} \) of them).
As in any semigroup, $\mu \in \beta \mathbb{N}$ is called *idempotent* if $\mu + \mu = \mu$. In this context, μ is idempotent if and only if for any μ-large set A, the set of all n such that $A - n$ is μ-large is μ-large.

Theorem (Numakura (1952) and Ellis (1958))

$\beta \mathbb{N}$ contains idempotents.
As in any semigroup, $\mu \in \beta N$ is called *idempotent* if $\mu + \mu = \mu$. In this context, μ is idempotent if and only if for any μ-large set A, the set of all n such that $A - n$ is μ-large is μ-large.

Theorem (Numakura (1952) and Ellis (1958))

βN contains idempotents. More precisely, if K is any closed subset of βN that is closed under σ, then K contains an idempotent ultrafilter (in fact, it contains 2^{\aleph_0} of them).
An application: Hindman’s theorem

If $\langle a_n \rangle_{n \in \mathbb{N}}$ is a sequence of natural numbers, define

$$FS(\langle a_n \rangle_{n \in \mathbb{N}}) = \{a_{n_0} + a_{n_1} + \cdots + a_{n_k} : n_0 < n_1 < \cdots < n_k\}.$$
An application: Hindman’s theorem

If \(\langle a_n \rangle_{n \in \mathbb{N}} \) is a sequence of natural numbers, define

\[
FS(\langle a_n \rangle_{n \in \mathbb{N}}) = \{a_{n_0} + a_{n_1} + \cdots + a_{n_k} : n_0 < n_1 < \cdots < n_k\}.
\]

Theorem (Hindman, 1974)

Suppose the sets \(A_0, A_1, \ldots, A_n \) form a partition of \(\mathbb{N} \). There is some \(i \leq n \), and some infinite sequence \(\langle a_n \rangle_{n \in \mathbb{N}} \) of members of \(A_i \), such that \(FS(\langle a_n \rangle_{n \in \mathbb{N}}) \subseteq A_i \).
An application: Hindman’s theorem

If \(\langle a_n \rangle_{n \in \mathbb{N}} \) is a sequence of natural numbers, define

\[
FS(\langle a_n \rangle_{n \in \mathbb{N}}) = \{ a_{n_0} + a_{n_1} + \cdots + a_{n_k} : n_0 < n_1 < \cdots < n_k \}.
\]

Theorem (Hindman, 1974)

Suppose the sets \(A_0, A_1, \ldots, A_n \) form a partition of \(\mathbb{N} \). There is some \(i \leq n \), and some infinite sequence \(\langle a_n \rangle_{n \in \mathbb{N}} \) of members of \(A_i \), such that \(FS(\langle a_n \rangle_{n \in \mathbb{N}}) \subseteq A_i \).

The idea of the proof is simple: Let \(\mu \) be an idempotent ultrafilter, and pick \(i \leq n \) so that \(\mu(A_i) = 1 \). The sequence \(\langle a_n \rangle_{n \in \mathbb{N}} \) can be found using a (surprisingly short) argument reminiscent of the Poincaré recurrence theorem.
More Ramsey theory

It turns out that the semigroup structure of βN can be used to prove interesting results in Ramsey theory . . .
More Ramsey theory

It turns out that the semigroup structure of βN can be used to prove interesting results in Ramsey theory . . .

- Ramsey’s theorem
More Ramsey theory

It turns out that the semigroup structure of $\beta\mathbb{N}$ can be used to prove interesting results in Ramsey theory . . .

- Ramsey’s theorem
- van der Waerden’s theorem
More Ramsey theory

It turns out that the semigroup structure of $\beta\mathbb{N}$ can be used to prove interesting results in Ramsey theory . . .

- Ramsey’s theorem
- van der Waerden’s theorem
- the Hales-Jewett theorem
More Ramsey theory

It turns out that the semigroup structure of $\beta \mathbb{N}$ can be used to prove interesting results in Ramsey theory. . .

- Ramsey’s theorem
- van der Waerden’s theorem
- the Hales-Jewett theorem

. . . and in the theory of Diophantine approximation.
More Ramsey theory

It turns out that the semigroup structure of βN can be used to prove interesting results in Ramsey theory . . .

- Ramsey’s theorem
- van der Waerden’s theorem
- the Hales-Jewett theorem

. . . and in the theory of Diophantine approximation.
- Kronecker’s approximation theorem
More Ramsey theory

It turns out that the semigroup structure of $\beta\mathbb{N}$ can be used to prove interesting results in Ramsey theory . . .

- Ramsey’s theorem
- van der Waerden’s theorem
- the Hales-Jewett theorem

. . . and in the theory of Diophantine approximation.

- Kronecker’s approximation theorem
- the Hardy-Littlewood and Weyl-Szüz extensions of Kronecker’s theorem
More Ramsey theory

It turns out that the semigroup structure of βN can be used to prove interesting results in Ramsey theory . . .

- Ramsey’s theorem
- van der Waerden’s theorem
- the Hales-Jewett theorem

. . . and in the theory of Diophantine approximation.

- Kronecker’s approximation theorem
- the Hardy-Littlewood and Weyl-Szüsz extensions of Kronecker’s theorem

Idempotent ultrafilters, and especially the *minimal idempotents*, play a critical part in almost all of these proofs.
Minimal idempotents

There is a natural ordering of the idempotents of $\beta\mathbb{N}$: If μ and ν are both idempotents, then

$$\mu \leq \nu \iff \mu = \mu + \nu \iff \mu \in \omega_\sigma(\nu) \iff \omega_\sigma(\mu) \subseteq \omega_\sigma(\nu).$$
There is a natural ordering of the idempotents of βN: If μ and ν are both idempotents, then

$$\mu \leq \nu \iff \mu = \mu + \nu \iff \mu \in \omega_\sigma(\nu) \iff \omega_\sigma(\mu) \subseteq \omega_\sigma(\nu).$$

A *minimal idempotent ultrafilter* is simply an idempotent ultrafilter that is minimal with respect to this order.
Minimal idempotents

There is a natural ordering of the idempotents of βN: If μ and ν are both idempotents, then

$$\mu \leq \nu \iff \mu = \mu + \nu \iff \mu \in \omega_\sigma(\nu) \iff \omega_\sigma(\mu) \subseteq \omega_\sigma(\nu).$$

A *minimal idempotent ultrafilter* is simply an idempotent ultrafilter that is minimal with respect to this order.

Question (Hindman-Strauss, 1998)

Does $(\beta N, +)$ *contain an idempotent that is both minimal and maximal with respect to this order?*
An affirmative answer

Theorem (Zelenyuk (2014) and B. (2015))

There is an idempotent ultrafilter that is both minimal and maximal.

Proof sketch: The idea is to find a minimal idempotent μ such that $\omega_\sigma(\mu)$ is sufficiently “far away” from all other idempotents in \mathbb{N}^*.
An affirmative answer

Theorem (Zelenyuk (2014) and B. (2015))

There is an idempotent ultrafilter that is both minimal and maximal.

Proof sketch: The idea is to find a minimal idempotent μ such that $\omega_\sigma(\mu)$ is sufficiently “far away” from all other idempotents in \mathbb{N}^*.

\[
\begin{array}{c}
\mathbb{N}^* \\
\downarrow
\end{array}
\begin{array}{c}
\omega_\sigma(\mu)
\end{array}
\]
Theorem (Zelenyuk (2014) and B. (2015))

There is an idempotent ultrafilter that is both minimal and maximal.

Proof sketch: The idea is to find a minimal idempotent μ such that $\omega_\sigma(\mu)$ is sufficiently “far away” from all other idempotents in \mathbb{N}^*.
An affirmative answer

Theorem (Zelenyuk (2014) and B. (2015))

There is an idempotent ultrafilter that is both minimal and maximal.

Proof sketch: The idea is to find a minimal idempotent μ such that $\omega_\sigma(\mu)$ is sufficiently “far away” from all other idempotents in \mathbb{N}^*.
An affirmative answer

Theorem (Zelenyuk (2014) and B. (2015))

There is an idempotent ultrafilter that is both minimal and maximal.

Proof sketch: The idea is to find a minimal idempotent μ such that $\omega_\sigma(\mu)$ is sufficiently “far away” from all other idempotents in \mathbb{N}^*.
Proof sketch (continued)

- In other words, we find an idempotent μ such that $\omega_\sigma(\mu)$ is disjoint from $\omega_\sigma(\nu)$ for every ν not already in $\omega_\sigma(\mu)$.
Proof sketch (continued)

- In other words, we find an idempotent μ such that $\omega_\sigma(\mu)$ is disjoint from $\omega_\sigma(\nu)$ for every ν not already in $\omega_\sigma(\mu)$.
- In fact, we arrange things so that $\omega_\sigma(\mu)$ is disjoint from the closure of any countable set in $\mathbb{N}^* - \omega_\sigma(\mu)$.

![Diagram](image-url)
Proof sketch (continued)

- In other words, we find an idempotent μ such that $\omega_\sigma(\mu)$ is disjoint from $\omega_\sigma(\nu)$ for every ν not already in $\omega_\sigma(\mu)$.
- In fact, we arrange things so that $\omega_\sigma(\mu)$ is disjoint from the closure of any countable set in $\mathbb{N}^* - \omega_\sigma(\mu)$.
- This is done by building on a theorem of Kunen from 1980, where he showed that there are points in \mathbb{N}^* with this property.
Thank you for listening