Preserving topological properties under refinement

Will Brian

July 6, 2014
Proposition (folklore)

If \(A \) is a subset of a topological space, then the following are equivalent:

- \(A \) is open in its closure.
Proposition (folklore)

If A *is a subset of a topological space, then the following are equivalent:*

- A *is open in its closure.*
- A *is the intersection of an open set and a closed set.*
Proposition (folklore)

If A is a subset of a topological space, then the following are equivalent:

- A is open in its closure.
- A is the intersection of an open set and a closed set.
- $A = U - V$, with U and V both open (or both closed).

For every $x \in A$, there is a neighborhood of x on which A is a closed set.

Sets of this kind are called locally closed.
Locally closed sets

Proposition (folklore)

If A is a subset of a topological space, then the following are equivalent:

- A is open in its closure.
- A is the intersection of an open set and a closed set.
- $A = U - V$, with U and V both open (or both closed).
- For every $x \in A$, there is a neighborhood of x on which A is a closed set.
Locally closed sets

Proposition (folklore)

If A is a subset of a topological space, then the following are equivalent:

- A is open in its closure.
- A is the intersection of an open set and a closed set.
- $A = U - V$, with U and V both open (or both closed).
- For every $x \in A$, there is a neighborhood of x on which A is a closed set.

Sets of this kind are called locally closed.
Lower separation properties

Proposition (easy)

If a topology \(\sigma \) is \(T_0 \), \(T_1 \), \(T_2 \), or \(T_{2\frac{1}{2}} \), then every refinement of \(\sigma \) also has this property.
Proposition (easy)

If a topology σ is T_0, T_1, T_2, or $T_{2\frac{1}{2}}$, then every refinement of σ also has this property.

Theorem

Let σ be any topology on a set X and let $A \subseteq X$. If A is not locally closed, then $\langle \sigma, A \rangle$ is not T_3. If σ is T_3 then the converse also holds: $\langle \sigma, A \rangle$ is T_3 if and only if A is locally closed.
Proposition (easy)

If a topology σ is T_0, T_1, T_2, or $T_{2\frac{1}{2}}$, then every refinement of σ also has this property.

Theorem

Let σ be any topology on a set X and let $A \subseteq X$. If A is not locally closed, then $\langle \sigma, A \rangle$ is not T_3. If σ is T_3 then the converse also holds: $\langle \sigma, A \rangle$ is T_3 if and only if A is locally closed.

Corollary

Every topology in $[\sigma, \tau]$ is T_3 if and only if σ is T_3 and every member of $\tau - \sigma$ is locally closed (with respect to σ).
Recall that a space X is submaximal if and only if every $A \subseteq X$ is locally closed.
Recall that a space X is submaximal if and only if every $A \subseteq X$ is locally closed.

Corollary

A T_3 space is submaximal if and only if every refinement of it is also T_3.
Recall that a space X is submaximal if and only if every $A \subseteq X$ is locally closed.

Corollary

A T_3 space is submaximal if and only if every refinement of it is also T_3.

The obvious examples of spaces like this are the scattered spaces of Cantor-Bendixson rank 1 or 2. These are not the only examples of submaximal spaces (Hewitt, van Douwen, and Alas et al. have given others). Nonetheless, they are the only “concrete” examples (any non-scattered example contains the base of an ultrafilter in its topology).
The exact same results hold for $T_{3\frac{1}{2}}$ spaces:

Theorem

- If σ is $T_{3\frac{1}{2}}$ then $\langle \sigma, A \rangle$ is $T_{3\frac{1}{2}}$ if and only if A is locally closed.
- If σ is $T_{3\frac{1}{2}}$ then every member of $[\sigma, \tau]$ is $T_{3\frac{1}{2}}$ if and only if every member of $\tau - \sigma$ is locally closed.
- A $T_{3\frac{1}{2}}$ space is submaximal if and only if every refinement of it is also $T_{3\frac{1}{2}}$.

Will Brian
Preserving topological properties under refinement
The exact same results hold for $T_{3\frac{1}{2}}$ spaces:

Theorem

- If σ is $T_{3\frac{1}{2}}$ then $\langle \sigma, A \rangle$ is $T_{3\frac{1}{2}}$ if and only if A is locally closed.
- If σ is $T_{3\frac{1}{2}}$ then every member of $[\sigma, \tau]$ is $T_{3\frac{1}{2}}$ if and only if every member of $\tau - \sigma$ is locally closed.
- A $T_{3\frac{1}{2}}$ space is submaximal if and only if every refinement of it is also $T_{3\frac{1}{2}}$.

The same is not true for the T_4 property. In fact, there is a T_4 topology σ on a set X and a point $x \in X$ such that $\langle \sigma, \{x\} \rangle$ is not T_4.

Theorem

If \(\sigma \) is a (completely) metrizable topology, then \(\langle \sigma, A \rangle \) is (completely) metrizable if and only if \(A \) is locally closed.
(complete) metrizability

Theorem

If σ is a (completely) metrizable topology, then $\langle \sigma, A \rangle$ is (completely) metrizable if and only if A is locally closed.

Sketch of proof.

For metrizability, use the Nagata-Smirnov metrization theorem.
Theorem

If \(\sigma \) is a (completely) metrizable topology, then \(\langle \sigma, A \rangle \) is (completely) metrizable if and only if \(A \) is locally closed.

Sketch of proof.

For metrizability, use the Nagata-Smirnov metrization theorem. For completeness, use the notion of completeness provided by the strong Choquet game. If II has a winning strategy in both \(\sigma \) and \(A \), then we can get a winning strategy for II in \(\langle \sigma, A \rangle \). (In fact, we can prove that \(\langle \sigma, A \rangle \) is strong Choquet if and only if \(A \) is – this property is implied by \(A \) being \(G_\delta \), so locally closed sets don’t work for everything!)
Some corollaries

Corollary

If σ is Polish then $\langle \sigma, A \rangle$ is Polish if and only if A is locally closed.
Corollary

If \(\sigma \) is Polish then \(\langle \sigma, A \rangle \) is Polish if and only if \(A \) is locally closed.

Proposition

If \(\sigma \) is zero-dimensional, then \(\langle \sigma, A \rangle \) is zero-dimensional if and only if \(A \) is locally closed.
Some corollaries

Corollary

If σ is Polish then $\langle \sigma, A \rangle$ is Polish if and only if A is locally closed.

Proposition

If σ is zero-dimensional, then $\langle \sigma, A \rangle$ is zero-dimensional if and only if A is locally closed.

Corollary

If σ is (completely) ultrametrizable, then $\langle \sigma, A \rangle$ is (completely) ultrametrizable if and only if A is locally closed.
The analogy with the T_3 and $T_{3\frac{1}{2}}$ properties breaks down after this point for metrizability: there is no good analogue of the results about arbitrary refinements of T_3 ($T_{3\frac{1}{2}}$) spaces and submaximality.

Proposition

Every non-discrete topology has a non-metric refinement.

However, the zero-dimensionality property does give a result of this kind:

Proposition

A zero-dimensional space is submaximal if and only if every refinement of it is also zero-dimensional.
Small inductive dimension

We write $\text{ind}_\sigma(X)$ for the small inductive dimension of X when it is given the topology σ.

Theorem 1
If σ is a regular topology on X and $A \subseteq X$ is locally closed with respect to σ, then $\text{ind}_{\langle \sigma, A \rangle}(X) \leq \text{ind}_\sigma(X)$.

Theorem 2
If σ is a metrizable, locally compact topology on X and $A \subseteq X$ is locally closed with respect to σ, then $\text{ind}_{\langle \sigma, A \rangle}(X) = \text{ind}_\sigma(X)$.

Question
Can this be improved to equality in the general case?
Small inductive dimension

We write $\text{ind}_\sigma(X)$ for the small inductive dimension of X when it is given the topology σ.

Theorem

1. If σ is a regular topology on X and $A \subseteq X$ is locally closed with respect to σ, then $\text{ind}_{\langle \sigma, A \rangle}(X) \leq \text{ind}_\sigma(X)$.

Question

Can this be improved to equality in the general case?
Small inductive dimension

We write $\text{ind}_\sigma(X)$ for the small inductive dimension of X when it is given the topology σ.

Theorem

1. If σ is a regular topology on X and $A \subseteq X$ is locally closed with respect to σ, then $\text{ind}_{(\sigma, A)}(X) \leq \text{ind}_\sigma(X)$.
2. If σ is a metrizable, locally compact topology on X and $A \subseteq X$ is locally closed with respect to σ, then $\text{ind}_{(\sigma, A)}(X) = \text{ind}_\sigma(X)$.

Question

Can this be improved to equality in the general case?
Small inductive dimension

We write \(\text{ind}_\sigma(X) \) for the small inductive dimension of \(X \) when it is given the topology \(\sigma \).

Theorem

1. If \(\sigma \) is a regular topology on \(X \) and \(A \subseteq X \) is locally closed with respect to \(\sigma \), then \(\text{ind}_{\langle \sigma, A \rangle}(X) \leq \text{ind}_\sigma(X) \).

2. If \(\sigma \) is a metrizable, locally compact topology on \(X \) and \(A \subseteq X \) is locally closed with respect to \(\sigma \), then \(\text{ind}_{\langle \sigma, A \rangle}(X) = \text{ind}_\sigma(X) \).

Question

Can this be improved to equality in the general case?
More on the small inductive dimension

While the implication reverses for dimension 0, it does not reverse in general:

Proposition

If σ is the usual topology on \mathbb{R} and $A \subseteq \mathbb{R}$, then $\text{ind}_{\langle \sigma, A \rangle}(\mathbb{R}) = 1$.

In contrast to this, we also have

Proposition

For each n, there is a (compact, metrizable) topology σ on a set X and some $A \subseteq X$ such that $\text{ind}_{\sigma}(X) = n$ and $\text{ind}_{\langle \sigma, A \rangle}(X) = n + 1$.

Proposition

If σ is any topology on X and $A \subseteq X$, then $\text{ind}_{\langle \sigma, A \rangle}(X) \leq \text{ind}_{\sigma}(X) + 1$.

More on the small inductive dimension

While the implication reverses for dimension 0, it does not reverse in general:

Proposition

If \(\sigma \) *is the usual topology on* \(\mathbb{R} \) *and* \(A \subseteq \mathbb{R} \), *then* \(\text{ind}_{\langle \sigma, A \rangle}(\mathbb{R}) = 1 \).

In contrast to this, we also have

Proposition

For each \(n \), *there is a (compact, metrizable) topology* \(\sigma \) *on a set* \(X \) *and some* \(A \subseteq X \) *such that* \(\text{ind}_\sigma(X) = n \) *and* \(\text{ind}_{\langle \sigma, A \rangle}(X) = n + 1 \).
More on the small inductive dimension

While the implication reverses for dimension 0, it does not reverse in general:

Proposition

If σ is the usual topology on \mathbb{R} and $A \subseteq \mathbb{R}$, then $\text{ind}_{\langle \sigma, A \rangle}(\mathbb{R}) = 1$.

In contrast to this, we also have

Proposition

For each n, there is a (compact, metrizable) topology σ on a set X and some $A \subseteq X$ such that $\text{ind}_\sigma(X) = n$ and $\text{ind}_{\langle \sigma, A \rangle}(X) = n + 1$.

Proposition

If σ is any topology on X and $A \subseteq X$, then $\text{ind}_{\langle \sigma, A \rangle}(X) \leq \text{ind}_\sigma(X) + 1$.
Local compactness

Strangely, A being locally closed does not suffice for local compactness to be preserved from σ to $\langle \sigma, A \rangle$. Instead, we get the following characterization:
Strangely, A being locally closed does not suffice for local compactness to be preserved from σ to $\langle \sigma, A \rangle$. Instead, we get the following characterization:

Theorem

If σ is locally compact, then $\langle \sigma, A \rangle$ is locally compact if and only if both A and its complement are locally closed.
Strangely, A being locally closed does not suffice for local compactness to be preserved from σ to $\langle \sigma, A \rangle$. Instead, we get the following characterization:

Theorem

If σ is locally compact, then $\langle \sigma, A \rangle$ is locally compact if and only if both A and its complement are locally closed.

Proposition

*For each locally compact topology τ on X, there is a compact topology σ on X and some $A \subseteq X$ such that $\tau = \langle \sigma, A \rangle$.***
Thank you for listening!